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NOMENCLATURE 

B  streamsheet thickness in normal 
direction 

E total energy 

F force vector 

Ff distributed friction force vector 

H total enthalpy 

I rothalpy 
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M Mach number 

Q heat sources 

Qg additional heat source 

S  stream surface 
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b 
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3 

£ -direction 
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fg body force 

h static enthalpy 

hi metric coefficients, i = 1,2,3 

k thermal conductivity 

k averaged kinectic energy 

m meridional distance 

it normal to streamsurface 

p pressure 

p  rotary stagnation pressure 
r  radius 

r gas constant 

s entropy 

t time 

u x-velocity  vector 

v y-velocity  vector 

w relative  velocity vector 

U       relative   flow angle 
3'     blade  angle 

Y specific heat ratio 

Y station angle 

e'  blade lean angle 

contravariant base vector 

covariant base vector 

vorticity vector 

angular coordinate 

curvilinear coordinate, u » 1,2,3 

density 

meridional flow angle 

stress tensor 

shear stress tensor 

secondary stress tensor 

stream function 

volume 

angular velocity 

pressure loss coefficient 

V streamwise gradient operator 

V gradient operator 

E 
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T 
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Superscripts 

A averaged quantity A 

A density averaged quantity A 

A' fluctuating quantity with respect to A 

A" fluctuating quantity with respect to A 

TQ relation stagnation quantity 

Subscripts 

r cylindrical coordinate components 

8 cylindrical coordinate components 

z cylindrical coordinate components 

m stagnation quantities 

p pressure side 
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INTRODUCTION 

Ihe computation of turbomachinery flows, particularly in the multistage 
•. :nfigur tion, is based on a complex set of jpproxlmations and 
interaction with empirical data. It combines an approximate space 
description with a representation of the shear stresses, which reduces 
to their effect on the stagnation pressure los3e3, or entropy 
production, provided by empirical information. 

In this report a rigorous derivation of theje components is 
presented. 

Fart 1 contains a systematic derivation of the conservation laws for the 
two  quasi  three  dimensional  space  approximations, namely the 
streamsurface approach, initially introduced by C.H.Wu, and the 
averaging procedure. 

Part 2 describes the formulation of the Through-flow models ar.d their 
coupling with the blade to blade flows, including a discussion of their 
numerical discretization. In particular, the derivation of the 
streamline curvature method is presented in details and it3 
implementation can be compared with the streamfunction approach. In 
both cases the limitations of the methods, in presence of supersonic 
flows, are discussed and their origin are pointed out. 

This work has been performed while the author was holding the NAVAIR 
Research Chair at the Naval Postgraduate School. The stimulating 
atmosphere, and discussions with Professor R. Shreeve have greatly 
contributed to the realisation of this work. 
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PART 1 : THE SPATIAL LEVEL OF APPROXIMATION 

The most general representation of a fluid flow is obviously the fully 
three-dimensional one, since it corresponds to the dimensionality of the 
real world. But needless to say, this representation puts in general 
very strong requirements on computer storage and computational times 
and, although three-dimensional computations are to be applied in 
increasing measure in the coming years, many physical situations can 
still be described with reasonable accuracy by an approach with a 
reduced number of space variables. 

Many configurations are indeed developed which, although not strictly 
two-dimensional in nature, can be considered as not "strongly" 
three-dimensional in the sense that one can expect that the variation, 
or the magnitude, of one velocity component is less important than the 
variations of the other two. A typical example of such a situation is 
the wing of a modern airplane with varying chord length and spanwise 
varying profile shape. Within a certain approximation which excludes in 
particular the wing-body junction and the tip regions, the flow along 
the wing could be approached two-dimensionally. Alternatively, a 
cylindrical airfoil under a sweep angle with respect to the upstream 
flow will present limited three-dimensional effects for relatively small 
values of the sweep angle. 

Axisymmetric configurations are similarly suitable for descriptions with 
a reduced number of space variables. 

It is clear that, neither for the spatial level of approximation nor for 
the other levels, is it possible to put forward general conditions of 
validity for a given set of assumptions. Depending on the initial flow 
conditions, the geometrical configurations and the required level of 
accuracy for any system of approximations, one will have to check the 
calculated flow behaviour against either experimental data or results 
from computations at a higher level of approximation. 

Hence, a fully three-dimensional computation will allow to check by 
comparison, the limits of validity Of a two-dimensional approach, in the 
same way as experimental data or a reliable viscous calculation will 
allow to ascertain the limits of validity of an inviscid approach. 

For example, it is well known that for flow incidences along an airfoil 
lower than certain values, the boundary layers will not separate and an 
inviscid two-dimensional approach might be of sufficient validity to 
predict the lift coefficients with acceptable accuracy; while for 
higher incidences the occurence of large separated regions might require 
a three-dimensional viscous computation in order to maintain the same 
level of accuracy. 

In the field of internal flows, such as channels and turbomachinery 
passages, three-dimensional effects are induced by the presence of 
material walls and the geometrical configuration will lead to 
three-dimensional flow components, even with a two-dimensional inlet 
flow. 

2 - 



In order to treat these situations an intermediate description between 
the fully three-dimensional and the two-dimensional can be introduced. 
This intermediate level of approximation which can be called 
Quasl-Three-Dimensional, approximates the flow as a succession of 
interacting families of two-dimensional flows along intersecting 
surfaces. Appropriate families of surfaces are defined, which can be 
treated as streamsurfaces, along which a two-dimensional velocity field 
projection is determined. Obviously a fully three-dimensional 
time-dependent flow field will require three families of intersecting 
surfaces in order to be determined completely. This corresponds to 
requiring three inter-dependent scalar functions of three coordinates in 
order to describe the three component velocity field restricted by the 
continuity equation. But only two families of surfaces are required for 
steady flows, see Section 2-8. Such a representation is equivalent to a 
complete three-dimensional description and no spatial approximations are 
involved. The Quasi-Three-Dimensional approximation comes in when the 
number of surfaces is reduced; that is, when it is considered that a 
valid description of the flow behaviour is obtained by neglecting the 
flow contributions along either certain families of surfaces or along 
certain members of a given family of surfaces. 

Actually, one could visualize these families of surfaces as generating a 
system of coordinate surfaces, such as the E,1 - E,, E,2 - n, 53 • ( 
families of figure 1.1.1. The projections of the velocity vectors in 
these surfaces are computed on a two-dimensional basis, and the yuasi~3D 
approximation is contained in the assumption that either the projection 
of the velocity field in one set of surfaces is independent of the third 
coordinate, with the consequence that the flow in one of the members of 
the family is representative of all of them, (for instance, the flow in 
a (£,;) surface being independent of n), or eventually that the velocity 
field in one family is of negligible magnitude with respect to the 
others, (for instance the velocity projection in the (;,n) surfaces). 

An alternative to the stream- or pseudo stream-surface method for 
obtaining a quasi-three-dimensional approximation is offered by the 
Averaging Method. This approach consists in averaging out the 
conservation equations with respect to a chosen coordinate, for instance 
the £3 direction, obtaining equations with the remaining coordinates as 
independent variables. 

Two-dimensional equations are obtained in this way, representative of 
the average flow with respect to the E,3 coordinate, but containing 
geometrical terms function of the averaged space direction. Clearly, 
limits of integration have to be defined and hence this procedure is 
best suited for internal flows with streamwise varying cross-sections. 

This procedure can also be extended to an averaging over a 
two-dimensional region such as the cross-section of the channel, leading 
to a quasi-two dimensional flow description in the direction 
perpendicular to this section involving terms which are functions of the 
varying cross-section. 

Although both approaches lead to equivalent representations in Quasi~3D 
approximations, with differences only in the way the interaction between 
the various families of surfaces are defined, the streamsurface approach 
can be used to define a description of a fully three-dimensional flow 
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whereas the averaging procedure can not. 

The two models are presented and discussed in the following sections. 
It is also clear from the preceding considerations that the interest of 
this quasi three-dimensional approach lies mainly in the field of 
bounded or internal flows. Therefore we will present this approach in 
view of its original development in the field or turbomachinery and 
channel flows. 

- i| - 



1.1. THE QUASI-THREE-DIMENSIONAL REPRESENTATION (Q3D) FOR INTERNAL FLOWS 
C.H. WU'S STREAMSURFACE METHOD Wu (1952), Wu (1976) 

The streamsurface method described in this section has been introduced 
by C.H.  Wu  (1952)  in order to approximate the internal flow in a 
turbomachinery blade passage. 

We will consider an arbitrary channel bounded by an inlet and an outlet 
surface, for instance a duct or the passage between two blades in a 
turbomachine, or the part of a river between two cross sections. A 
typical configuration is represented schematically in figure 1.1.1. An 
arbitrary curvilinear coordinate system £l, E,2, E,3 (or E,, n, O is shown 
with E,1 taken approximately in the mainstream direction and E,2, E,3 

defining roughly transverse directions. The inlet and outlet sections 
may be defined by constant E,1 surfaces. A typical representation for a 
turbomachine passage is shown in figure 1.1.2. 

In this figure the direction of the axis of rotation of the machine z 
may be identified with £', while the cylindrical coordinates d and r are 
respectively to be considered as E,2  and E,3  coordinates. 

Representative streamsurfaces, such as the S) or S2 surfaces in the 

above figures are obtained by following the paths of the fluid particles 
lying along selected lines in the inlet section. For instance, the 
fluid particles along the line AiB, of figure 1.1.1 will generate a E,3 

type of surface, or Si surface,  and the particles along A2B2 will 

generate a E,2  type of surface (S2 surface) 

More generally, the considered surface S is described by a time 
dependent equation 

SU1, i2,   E,3,   t) = 0 (1.1.1) 

obtained by following the paths of the fluid particles emanating from an 
initial line. In a general time dependent flow, S will not be a strict 
streamsurface, in the sense of the velocity vector being normal to the 
surface. This will however be the case when the flow is steady. 

The surface (1.1.1) can be written explicitly in terms of the reference 
coordinate E,3  as follows, 

53 = e'U1. S2, t) (1.1.2) 

where the direction E,3 can be visualized as being roughly in the 
direction of the normal to S, and where E,1 and E,2 are coordinates 
defining the surfaces. In the following, we will restrict ourselves to 
time independent surfaces ;  since S is then a streamsurface, one has at 

-» 
each point of the surface S, with n being defined as normal to S 

dS  • *   • •» 
— - v.VS = v.n = 0 (1.1.3) 



for n defined by 

•  * (1 1 1) 

Two possibilities are open in order to describe the family of surfaces 
with respect to the arbitrary curvilinear system of coordinates, figure 
1.1.3. 
1) The surface S does not contain the C1 and 52 lines and is situated 

arbitrarily with respect to the local coordinate system £ , (a-1,2,3). 

In this case, the surface can be represented by equation (1.1.2) and the 

normal to the surface is proportional to the vector n, defined by its 
covariant components n (-! 

with S = C  - CU\  C2), 

covariant components n (-3i£3, -325
3, 1).  Indeed, from equation (1.1.1) 

n = - (ffl).e1 - jffr.c" + l.e1 (1.1.5) 

*i *» *• where e , e , e are the contravariant base vectors of the coordinate 
•* 

system.  Note that the components of n as defined by equation (1.1.5) 
are not projected along unit vectors, since the base vectors are not of 
unit length.  For instance, in an orthogonal curvilinear system with 
metric coefficients hi, h2, h3, the length of the contravariant basis 

vector e is equal to 1/h . 

-•a 
Hence, one would have, with e denoting the unit base vectors 

n = — T*T e' - — ^r e2 • — e3 « n e (1.1.6) hi 35     h2 3^     hi        —   a 

defining hereby components n as the projections of the normal n along 

the unit vectors e . 

-• 

It is to be remembered that the covariant base vectors e are tangent to 

the 5 -coordinate lines, while the contravariant base vectors e are 
ex 

normal to the surface £ = constant. These two sets of base vectors are 
aligned in the same directions when the coordinate system is orthogonal. 

ii) The surface S is defined by the coordinate lines £l and £2; that 
is, S is a C3 - constant surface, and the surface S contains the lines 
£' » constant and £2 - constant.  In this case, it is seen from equation 

(1.1.5) that n-e* and if the coordinate system is orthogonal, the unit 

vector along the normal direction is given by 1 = h3.n . 

6 - 



1.1.1.  Streamsurface variations 

With the general representation of S by equation  (1.1.2),  the 

(covariant) components of the normal vector n, are given by 

- 9,£3 - - n, (1.1.7) w - 
and 

||T - *2^  = - n2 (1.1.8) 

with n3= 1. 

This allows us to define the variations of any scalar flow quantity 
along the streamsurfaces S, as functions of £l and t2, by the following 
relations, where the overbars indicate variations along the surface, 

•U\     3 (1.1.9a) 
9(,1 - 3£'   "W    9*7 

or in condensed notation 

3, - 3, • (9,53).93 = 9, - n, . 93 (1.1.9b) 

Similarly 

9    9   ,3C\  9 (1.1 .10a) 
9^2 - 9£2   9£2  9T1" 

or in condensed notation 

92 = 92 + (92£
3).93 = 92 - n2 . 93 (1.1.10b) 

Obviously, the variations 93 with respect to 53 along the surface are 

identically equal to zero, for arbitrary functions g 

f-fiSTg-o (,-,-") 

Equations (1.1.9) to (1.1.11) can be grouped in the form 

9^8 - 3Qg - nQ . 93g a - 1,2,3 (1.1.12) 

7 - 



or in vector notation 

ig-tg-a. 3.g (1-1-13) 

for any scalar quantity g. 

In the particular choice of coordinates where the surface S is the (£l, 
£2) surface, that is a surface 53 = constant, case ii above, the 

variations 3i and 32 are identical to the ordinary partial derivatives 

3, and 32, since the components ni and n2 of the normal vector are zero 

according to equation (1.1.5). 

+ 

The gradient with overbar Vg is the projection of the three-dimensional 
-• 

operator Vg on the surface S. This can be seen from the definition of 
the gradient of a scalar in curvilinear coordinates, when the 
coordinates £' and £2 are in the surface S ; case ii. With the index Y 
ranging from one to two, one has 

"g = e -9ag • e '3Y
g  £ '3*g        Y = 12 (1.1.TO 

•    -• 
Since in this case e = n, this equation is identical to equation 

(1.1.13) with the definition 

h       ty       z „ Y  1 o (1.1.15) vg = e  . 3yg       Y = 1 ,2 

when the C1 and £2 lines are in the surface S. 

Note that equation (1.1.13) remains valid for any system of coordinates. 

This approach can be applied to obtain the streamsurface variations for 
-» 

a vector quantity F. from the definition of the divergence of a vector 
in curvilinear coordinates, one has 

V.F = e .3 F = e .3VF + e'.3,F a     Y 
(1.1.16) 

•Y   •   •   • 
= e .3yF + n.3,F 

If £' and £2 are orthogonal coordinates in the streamsurface S, the 
first term can be worked out explicitely as follows. 

- 8 - 



> 

V.F = e .3yF 

_ (1.1.17) 
jpjj- C3Y(F

Ih,ha) • F'a.th.h,)] 

hih2  i nifii 

The first term is the two dimensional form of the divergence operator, 
while the second term represents a contribution to the "streamsurface" 

-> 
- •* 

divergence operator V.F, arising from the deformation of the surface in 

the third direction. 

* * •* This contribution vanishes when the vector F lies in the surface (F.n-0) 
or when the streamsurface is independent of the third coordinate £'. 

In both these cases the flow can be considered as two-dimensional. 

With the definition (1.1.17), equation (1.1.13) can be generalized to 
vector quantities as 

U- v\F-n\9,F 
(1'1-18) 

There are various ways to obtain the flow equations considered along the 
streamsurface S. One way can be termed as an "algebraic method" and was 
originally followed by Wu (1952) with cylindrical coordinates, and 
further extended to formulations in arbitrary, curvilinear coordinate 
systems by Wu (1976). 

This approach consists in introducing directly the  streamsurface 
—    — o 

derivatives hi    and 32 in all the equations of motion written in the £ 

coordinate system in place of the ordinary derivatives 3i and 92, 

obtaining in this way two dimensional equations where all flow variables 
are considered as functions of £' and £* along the selected 
streamsurface. 

The derivatives of the flow variables with respect to 53 appearing in 
the obtained "streamsurface" equations, are considered as known 
quantities. This is also the case for the geometry of the streamsurface 

-• 

S, which has to be given through the knowledge of the normals n in each 
point. Since the flow surface will only be known once the whole flow 
field has been obtained, the present decomposition of the three 
dimensional flow field is clearly an iterative procedure. 
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In order to obtain the necessary information about the derivatives of 
the flow variables in the third direction £3, the two dimensional flows 
have to be solved along all the surfaces of the same family £3 = 
£3(£li52). This corresponds to the different surfaces of the type 
AiB^jD, of figure 1.1.1 or to the different surfaces S, on figure 

1.1.2. 

On the other hand, the information which is necessary in order to define 
the shape of these streamsurfaces can only be obtained through the 
determination of the flow components along the streamsurfaces of another 
family, such as the surfaces of the type A2B2C2D2 on figure 1.1.1, or 

the S2 family of figure 1.1.2, when the first family is taken to be S! 

surfaces. 

Therefore, for time independent flows, the complete three dimensional 
flow field will be reconstructed through the iterative solution of the 
two dimensional flows on two families of intersecting streamsurfaces. 

In the following we will follow an approach which differs from the 
"algebraic" method, in order to derive the two dimensional 
"streamsurface" equations. We will express directly the conservation 
laws on a finite volume delimited by two neighbouring streamsurfaces, 
forming a streamsheet of thickness b. This will lead to a formulation 
which is written in vector form, with gradient operators along the 

•* 

surface, such as the V operator of equation (1.1.17). The obtained 
formulation will therefore be valid in any system of coordinates and the 
explicit, algebraic form of the flow equations can be obtained by 
expressing the gradient operators in function of the selected coordinate 
system. 

1.1.2.  Streamsurface Formulation of the Mass Conservation Equation 

Referring to figure 1.1.4, we consider the domain enclosed between two 
streamsurfaces, forming a streamsheet of thickness B. A reference 
streamsurface is considered as formed by the mid-points of the 
streamsheet and the obtained differential equations are referred to this 
surface. In order to define the streamsurfaces, a curvilinear 
coordinate system is introduced with the direction £3 representing the 
coordinate which is to be eliminated from the flow equations. The 
streamsurface will be assumed to contain the £' and £2 coordinates and 
is therefore defined as a 5* • constant surface. We will select 51 and 
£2 to form an orthogonal system in the streamsurface with metric 
coefficients h, and h2. 

a + + 
The unit vectors along the E,    axes are defined by e related to the e , 

if the coordinate system is orthogonal, by 

•   1  *   .  +a  +a no summation on a 
aha   a a - 1,2,3 
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The normal vector n is equal to e' according to equation (1.1.5). The 
physical streamsheet thickness in the direction of the coordinate is, is 

measured by B. 

The thickness B is also written as B - bh», where hj is the metric 

coefficient associated to £*, that is the elementary length dl» along 

this axis is dls»h,d5'. The quantity b is then a thickness measured in 

units of the variable £'. For instance, if £'-6 the angular variable in 

cylindrical coordinates, then b is an angular thickness and B-br where r 

is the local radial coordinate. 

The volume di formed by variations dS1, d£2 and d£* along the three 
a 

£ -axes,  is measured by the determinant of the inverse Jacobian matrix 
of the transformation from a cartesian coordinate system to the 

1 
£ -system, 1/J. That is dt • : dSld£*d£* and when the ^-system is 

orthogonal, 1/J - hih2h,. 

Therefore, the elementary volume da formed with the length elements dl,- 

h1d^
1, dl2- h2d£

2 on the surface, and b in the direction £', see figure 

1.1.1, is defined by 

dfi - j d5xd£2 (1.1.19) 

If the metric coefficients h, and h2 are introduced, we can define the 

streamsheet thickness B, measured in the direction normal to the 
surface, by 

2  - Bh,ha (1.1.20) 

When the coordinate system is orthogonal, B-B-bhi, but in general the 

ratio B/b is equal to the ratio of the elementary distance dn along the 
normal to the surface, and the variation d£' along the £' direction. 
That is 

B  dn .. . _,. 
b " dp 0.1.21) 

The general form of a scalar conservation law for a quantity u, is given 
by 
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|^ I pudfl • I    F*.d3 = 0 (1.1.22) 

For instance for the maaa conservation law, u-1 and F=pv. 

This integral formulation is applied to the infinitesimal volume dn of 
figurt 1.1.4.  The side faces 1 and 2, formed by the £* and t1 

directions have the surface elements 

d3(>) - $ d^.e1 (1.1.23) 

it1) , *i •r    »Bhi" 

balance of fluxes for faces 1 and 2 is given by 

If the coordinate system is orthogonal dS  -Bhid£a.el-Bh,hjd<;* .el. The 

F*.d£(,) - (F'b/J d«')€.*dci - (F'b/J d€«)€, 
1+2 

|^T (bF'/J) dC'de' (1.1.24) 

|^T (Bh.hjF'JdC'd^2 

where Fl is the projection of the flux vector on the base vector cl, 

F. . fp (1.1.25) 

and the overbar on the partial derivative indicates a derivative along 
the streamsurface. This implies that with another system of 
coordinates, whereby the S1, £2 axes are not in the surfaoe, the 
derivatives will have to be evaluated by relations (1.1.12). A similar 
contribution is obtained for the balance of fluxes through the faces 3 
and i<, with 

dS(a) - ~- d£l.c2 (1.1.26) 

leading to 
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,?(2) 

3+U 

F.dSv ; = (F2b/J d£l)r2 ^C2 - (F2b/J dE.l)c2 

f-j- (F^/Jjdli'dC2 (1.1.27) 

|p- (Bh.h^^d^'dt2 

with 

F2 = F.e 
t  + 2 (1.1.28) 

/ 2 \ 

If the coordinate system is orthogonal  dS  = Bhid£!.e2- Bhih2d^
1.e2. 

The balance of fluxes for the remaining faces 5 and 6, with surface 
element 

dS(3) = h.hadC'd^.e3 - T~ d5'd52 - I  h.h.d^d^.e3       (1.1.29) 
J        b 

is obtained as follows, 

j   F.dS(>) = <f,h,h,de,de,>ei+b - (f'h.h.d^'dt2)^, 

5+6 

3 f*.  u ,*,  ,r.,rJ (1.1.30) - b ITT (h,h2f
3) d^'dC2 

b |^T (g h,h2F.n) 

since, from equation (1.1.29) 

f3 - F.e3 - F.I 
n 

(f.n, 5 . F- ! 
(1.1.3D 

Grouping all the terms, one obtains after dividing by d£ld£2, the 
conservation law for the streamsheet of thickness B 

|^ (puBh,h2) • |^T (Bh,h2F') • |p- (Bh,h2F
2) - -b |^T (F.Tn h,h2)  

(1-K32) 

In the left hand side one recognizes the expression of the two 
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dimensional divergence operator in the coordinates S1 and £2 along the 
surface. The conservation equation becomes, for time independent 
surfaces, applying the definition (1.1.17) 

|r (puB) • V (BF) = -b 3, (F.T ) (1.1.33) 
ox, n 

where the overbar on the gradient operator indicates a "streamsurface " 
derivative. 

The right hand side term is a reminder of the fact that the present 
description is not strictly two dimensional, but describes a selective 
sheet out of a general three dimensional flow. 

The condition for the considered surface to be a streamsurface is, from 
•+ •• 

equation (1.1.3), v.n-0. Consequently, the right hand side of equation 
•+ •• 

(1.1.33) vanishes for the mass conservation equation (since F»pv) which 

reduces to the following form 

f^pB) •5(pB$) -0 (1-1-31° 

Considering now equation (1.1.3*0 as a starting point, one can apply 
this equation to any system of coordinates, with the definitions 
(1.1.13) and (1.1.17) of the streamsurface derivatives. 

1.1.3.  Definition of the Streamsheet Thickness 

The above formulation of the continuity equation along the streamsurface 
has to be identical locally to the full three dimensional form of the 
mass conservation equation. This condition provides a relation between 
the streamsheet thickness B and the three dimensional properties of the 
flow. 

Indeed, applying the relations (1.1.13) and (1.1.17) to the general 
three dimensional form of the continuity equation, 

|f + $ (pv) = 0 (1.1.35) 

gives 

|f +V(pv-) - -PIUS °-1-36) 

Equation (1.1.36) should be identical to the streamsheet form (1.1.31) 
of the mass conservation law. Identifying these two equations, leads to 
a relation defining the streamsheet thickness as a function of the three 
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dimensionality of the flow, namely 

|| • (v.tf)B - B n.3, (1.1.37) 

For time independent flows, the time derivative vanishes and the above 
relation becomes 

1 • •* n.   ••  •*   •*  •* 
-  (v.V)B = n.3,v » -v.3,n 

(1.1.38) 

If the three dimensional flow field is known and the streamsurface 

normals n defined, equation (1.1.38) will determine the evolution of B 
along the selected streamsurface. Note that the operator on the left 
hand side is the convective derivative in the streamsurface. This 
equation expresses that the variation of the streamsheet thickness is 
defined by the variation of the velocity field in the third direction. 
Therefore if the flow is independent of this coordinate, the right hand 
side of equation (1.1.38) will vanish and B may be taken as constant : 
the flow is then two dimensional. 

Geometrical Interpretation 

The condition (1.1.38) on B can also be written as a purely geometrical 
relation  between  the 
streamsurface, expressing 
streamsheet necessarily implies that the direction of the normals to the 

accross the streamsheet, as 

variations  of B and 
that a divergence or 

the normal 
contraction 

to 
of 

the 
the 

surface change during 
illustrated on figure 1. 

a displacement 
1.5. 

From figure 1.1.5, considering a displacement dl in the streamsheet,  it 
can be seen that the divergence angle a  of the streamsheet is given by 

tan o 
1 dB 
2 dl (1.1.39) 

and that the normal unit vectors rotate by the same angle  in the 
displacement from P to Q. Hence 

nQ nP 
Bl!n 
2 3n 

-r.« (1.1.10) 

where 3/3n represents the derivative in the normal direction, 
approximation tan a * a one obtains 

With the 

1 dB •     ^_n 
B dl  1   '  3n 

(1.1.^1) 
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Since 1. is an arbitrary direction within the streamsurface, the left 

hand side operator is equal to VB/B, and equation (1.1.11) becomes with 

(1.1.21) 

-•       -» 

1 ft - -^S- - 6^5 (1-1.12) 
B      3n     B dC 

When C3 is along the normal dn=h3d£
3, 1 - h3n = h3e and 

| VB = - 1- 8, (h,n) - - 3,n - jj 33h3 (1.1.13) 

Introducing B-B-bh3, in this relation, leads to the following equation 

for b 

-• 

1 ^ -x  *    1 J Vb - -33n - J $h3 (1.1.11) 
b h3 

Equation (1.1.11) can also be written in the following form, which is 
more appropriate for explicit computations, 

(v.V)b    a  .       » a (1.1.15) —  = -v .33n = n ,33v b a   a 

where the orthogonality property (1.1.1) has been introduced under the 
form 

va.n =0 (1.1.16) 

Example E.1.1.1.  Cartesian coordinates 

In cartesian coordinates and a streamsurface defined by z*z(x,y) one can 
eliminate the z-variations along this streamsurface in the continuity 
equation (1.1.31). One has 

f^pB) + |j (pB u) • |p- (pB v) - 0 (E.1.1.1) 

The streamsurface derivatives are defined by 
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!_,!__ 3_                     (E.1.1.2) 
3x  3x x 3z 

V m  3_ _ 3_                    (E.I.1.3) 
3y ' 3y y 3z 

with the normal vector n given by 

n- - (|i) T - (fe T • ? (E.I.1.4) 3x  x   3y  y   z 

Equation (1.1.38) becomes 

Observe that B=b, since all metric coefficients are equal to one. 

Example E.1.1.2.  Cylindrical coordinates - SI family 

If the streamsurface SI of figures 1.1.1 or 1.1.2 is considered as a 
surface defined by r=r(6,z), in cylindrical coordinates, one can 
identify S1=0, £2=z and £'-r. The metric coefficients are h!  - r , 

h2=hj»1. 

The continuity equation  (1.1.3*0   becomes 

3     /  ^       19~^c.^       19~/D       \       n (E.I.1.6) -  (PB)   •  ; ^  (PBve)   •  - Vz   (pBvzr)   -  0 

where the velocity components v ,v , v denote the physical components. 

The streamsurface derivatives are defined by 

la , la _ n  la 
36  36   6 3r 

(E.I.1.7) 

la = la . n  la 
3z  3z   z 3r 

where the components of the normal vector n - V r(6,z) are given by 
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3r(6,z)  „ " 

-3r(6,z)  ~ ,_. , . R. nz = —ai— = nz (E.I.1.8) 

n » 1 = n r      r 

where n represents the projections of n along the corresponding unit 

vectors. 

Equation (1.1.38) for the streamsheet thickness B=b becomes 

+ ? _  V9 3B J   3B  _ r  3  ,V     3        3   -  (E.I.1.9) 
V.V B - — TS"+V 5T " B Cna s- (—) + n ^r-v +n  ~- v ] - r  36   z 3z     8 3r r     r 3r r   z 3r z 

Example E.1.1.1. Cylindrical coordinates - S2 family 

If the streamsurface S2 of figures 1.1.1 or 1.1.2 is considered as a 
surface defined by 6=9(r,z) in cylindrical coordinates, one can identify 
C'-z, 52-r and £3-6. The metric coefficients are h,= 1 , h2 = 1 , h, = 

r. The continuity equation (1.1.3*0 becomes, with B=b.r 

3pB  3  . _  .  3  . _  ,  0 (E.1.1.10) •—  • r- (pBv ) + r- (pBv ) = 0 dt   dz    z   dr    r 

The streamsurface derivatives are defined by 

3g_ _ 3£     3g_ (E.1.1.11) 
3z "' 3z   z 36 

i£ . i£ - n i£ 
3r  3r   r 36 

where the components of the normal vector n = 7 6(z,r) are given by 

3tJ(z,r) n • r-*— = n z      9z     z 

36(z,r)  " ,      . n • - —^  = n (E.1.1.12) r     3r     r 

nQ = 1       - r. nfl 

Equation (1.1.45) for the streamsheet thickness b becomes, 

* 5K     3b,.   3b  . r  
9vz ,   3vr  n9 3V      (E.1.1.13) 
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1.1.1. Streamsurface Formulation for the Momentum Conservation Equation 

The momentum equation is written in integral form in an absolute frame 

of reference, in presence of external forces f 

3_ 
at IS . f p?e pvdfl + cj) F.dS    pf dfi (1.1.17) 

where 

S     + ~   +   J   S    =     +f\+ = (1.1.18) F = pvQv + pi - T « pv@v - o 

is the momentum flux tensor. 

Following the procedure which led to equation (1.1.32) in the previous 
section, one obtains, 

|^ (pvB) + —^j- [37 (F.e1 Bh,h2) • 37 (F.e2 Bh,ha)] 

(1.1.19) 

PVB " hfhT 3i   C?Jn h^ 

=   •* 

The product (F.1 ) reduces to the contributions from the pressure and n 
•*    •¥ 

shear stresses since v.n=0 expressing the fact that one follows a 

streamsurface. Hence, 

-F.T - o.T (1.1.50) n     n 

The derivative terms on the left hand side, with an overbar to indicate 
that they are to be considered along the streamsurface, have the form of 
the divergence of a tensor in the two-dimensional space 5'-£2. Hence 
the quasi-three-dimensional momentum equation becomes, applying equation 
(1.1.17) 

•* •* 

J tf^pBv) • V(pBv©v)] • i V[(pl - T)B] - pfe * | 3,(5.Tn)   (1-1-5D 

written completely in the two-dimensional space C'-S2. 

The additional term in the right hand side appears as an extra force 
-• 

term f acting on the "streamsurface" flow and originating from the three 
dimensionality of the flow. 
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pBf » -b3, [(pi - T).T ] = b3,(o.f ) (1.1.52) n        n 

An alternative expression for the additional force term can be obtained, 

if the relation (1.1.12) between B and the derivatives of n is 

introduced in equation (1.1.51). 

One has 

•+       •+       •* •* 

V (o B) - B(V.o) + (o.V)B = B(V.o) - o  b3(? ) (1.1.53) 
n 

and transferring the second term to the right hand side of equation 
(1.1.51), leads to the following form of the quasi-three dimensional 

momentum equation applying b1 = B.n as derived from equation (1.1.29) 

B Cft(p*B) + * ^0*) " ^ '  + "-9»° + P?e        (1-1.54) 

The first term on the right hand side is the expression of an additional 
•* 

force fB, obtained from the relations 

nt         „r * (°-v)B  * ft - (1.1.55a) pf0 - pf + —   = n.d,o 

or applying the relation (1.1.21) 

nt        *        3o (1.1.55b) 
prB "' ]n * 3n 

Equation (1.1.54) takes the following form 

B C!t(p*B) + ^P1*©*^ + ^P! " "> " P?B 
+ p?e        (1-1.56) 

Non-conservative formulation 

Substracting the quasi-three dimensional continuity equation (1.1.34) 

multiplied by v, from the momentum equation (1.1.51), one obtains the 
non conservative formulation for the quasi-three-dimensional momentum 
equation, 

£• (vi) v--l-vroB) + ?• f               d.1.57a) 
dt          pB e 
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or, from equation (1.1.56) 

|1+ (J.J) J = 1 J.3 • ? • ? (1.1.57b) 
dt p      B   e 

The last equation has the usual form of a two-dimensional momentum 
equation in the subspace of the streamsurface, with however the addition 

of the distributed force f„ acting on the flow. Hence, the whole effect 

of the three-dimensionality on the non conservative, two dimensional 

flow description is contained in the force term fg. This extra force 
arises from the projection, on the normal direction, of the pressure and 
shear stress gradients in the third coordinate direction, as shown by 
equation (1.1.55). Note also, that the conservative formulation 
(1.1.56) contains also the influence of the variation of the streamtube 
thickness B. 

In absence of shear stresses and in a steady flow configuration, 

equations  (1.1.55) and (1.1.3) show that the additional force fD is 
B 

orthogonal to the velocity field along the streamsurface S. One has in 
this case 

Pf •n|?r--r|g d.1.58) B 34 n  3n 

and 

P  fB.v  = 0 (1.1.59) 

This is an interesting relation which will be used in conjunction with 
the distributed loss model in the field of turbomachinery flow models. 

The results obtained in this section remain valid for other forms of the 
momentum equation, in particular for Crocco's form, or for the equations 
in a relative system. 

Crocco's form of the momemtum equation becomes, when written along the 
streamsurface S 

|f- v xi = Tvs - iH+ J V.T • ? • ? (1-1'60) 
OL p      Be 

whit the absolute vorticity c defined along the streamsurface by 

7  s  + (1.1.61) ; - v x v 

where all the derivatives are streamsurface derivatives. Note that by 
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application of (1.1.13) to the entropy relation, one can eliminate the 

pressure from fD, since D 

n a „  + /Ta a  a v,x (1 .1.62) 
- - djp - n (Td3s - d3h) 

Example E.I.1. *J : Cylindrical coordinates 

Take S1- 6, £2- z, E,3=  r, for the streamsurface Si defined by r = r(8,z) 

with hi-r , h2- h3»1. 

•* •* 

The additional force term fg, equation (1.1.55), becomes with n defined 

by equation (E.1.1.8) 

*     r   3£ . a", * (E.1.1.14) 
pfB • [" 3? * a7] n 

For the S2 type of surface, figure 1.1.2, 6=6(z,r), one obtains the 
+ -• 

force term fB, with h3-r, hi=h2»1 and n defined by equation (E.1.1.12) 

p? = [- 9E • ll] ft (E.1.1.15) 

The momentum equations are obtained in cylindrical coordinates with the 

addition of f„ and with the derivatives replaced by the streamsurface 

derivatives 3, with 3/36 set to zero. 

For inviscid flows, one obtains for instance 

P?B - - n || (E.1.1.16) 

and the radial component of the momentum equation becomes 

3t    r 3r    z 3z     p 3r   B,r   e,r 

1.1.5.  Streamsurface Formulation for the Energy Conservation Law 

The energy equation can be treated exactly in the same way as the mass 
conservation equation. The integral form of the energy equation is 
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f-   pE dfi + &  F.dS =   Qdtt (1.1.63) 

where Q is a source term and the energy flux is defined by 

F = pvH - T.V - kvT (1.1.64) 

Following the same steps as in section 1.1.1., equation (1.1.63) becomes 

f- (pBE) • V [(pvH - T.V - kVT)B] = QB - b8,(F.l' )        (1.1.65) 
at n 

where 

F.t = -(T.V + kh)J (1.1.66) n n 

•*  •> 

since v.n=0. 

Applying the continuity equation leads to the alternative form 

p [|M + (*.?>„] -If*!? t(T.V • kVT)B] • Q - | 3j(F.1n)    
(1-K6?) 

or introducing equation (1.1.42) 

p C|H • (*j)H] . |£ + i (?.; + k$T) + Q - £.8i?      d.1.68) 

Hence, the confinement of the energy balance to the streamsurface S, 
leads to a conservation equation for the energy fluxes within the 
streamsheet of thickness B=bh3, whereby an additional heat source term 

appears, due to the three dimensionality of the flow, given by equation 
(1.1.69). 

Qn - - n.3,F = n.93(kVT + T.V) 

Van 

(1.1.69) 

These additional sources result from the normal components of the 
gradients, or the normal direction of the heat conduction fluxes and the 
work of the viscous shear stresses, in the third direction. 

In absence of shear stresses and heat conduction effects, the quasi 
three dimensional form of the energy equation reduces to, with the 
source term Q-0, 
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dH _ 1_ 9p (1.1.70) 
dt " p at 

where 

L = i_ + ;£ (1.1.71) 
dt at 

is the total material derivative along the streamsurface, and is 
identical to its two-dimensional restriction. 

1.1.6. Quasi-Three Dimensional Interaction Procedure 

Summarizing this approach, we have seen that the flow behaviour can be 
followed along a streamsurface 5

3
=E;

3
(5',E;2) and the conservation 

equations for mass, momentum and energy can be written in a 
two-dimensional form in function of the space variables Cl and £2 with 
space derivatives taken along the streamsurface. The influence of the 
three-dimensionality of the flow appears in all three conservation 
equations through 

i) a variable streamtube thickness B 
ii) through an additional force term whose non-viscous contribution is 

the pressure gradient in the £3 direction acting in the direction 
normal to the surface, in the momentum equation and 

iii) for the energy conservation equation, through an energy source 
term whose non-viscous contribution is a normal flux arising from 
the thermal conductivity in the 53 direction. 

In order to solve this two-dimensional system of equations, the 
extra terms just mentioned have to be known, as well as the shape 
of the streamsurface. These informations, known only if the 
complete three-dimensional flow description is available, have 
therefore to be obtained in an iterative procedure. 

In practical applications to internal flows, the present approach 
is best suited for steady state flow situations, since in this 
case, one can completely define the velocity field through two 
families of streamfunctions ij/j and v2, Yih (1979). 

•+ •+ 

The steady state continuity equation V(pv) = 0 is satisfied by the 
existence of two functions ij>i and \l>2  such that 

pv - p0 (VVl x 7va) (1.1.72) 

By definition, one has 

(v.v^, - 0 (1.1.73) 

(v.$)¥, - 0 (1.1.71) 

which shows that the velocity vectors are tangent to the surfaces 
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4'i(51 I£2I£3) = constant and ty2(V ,52 ,S3) - constant and hence that 

the intersection of any of these two surfaces is a streamline. 
Therefore, these surfaces form two families of streamsurfaces 
generated by the various streamlines issued from the fluid 
particles situated in the inlet surface of the flow domain. In 
figure 1.1.1, the surfaces A^iCD, (or Si  in figure 1.1.2) and 

A2B2C2D2  (or S2 in figure 1.1.2) are typical representations of 

surfaces of constant <pi and t|>2 values. 

The complete three-dimensional flow description is therefore 
reconstructed by writing the two-dimensional form of the equations 
of motion along two families of intersecting surfaces such as 1^1 

and <|>2.  The information necessary on one family of surfaces is to 

be obtained from the flow behaviour on the other family. For 
instance, if the surface S considered above is a member of 1^, 

family, the shape of this surface as well as the streamtube 
thickness B and the additional terms which are all determined by 
the variations of certain flow variables in the 5' direction, will 
be obtained by the solution of the same two-dimensional form of the 
equations written along the other 4»2 family of surfaces, which 

contains, by definition the variations in the 5 s direction. 

For this latter family of two-dimensional flows, the knowledge of 
the additional terms can only be obtained from the i|>, family of 

flows and this sets up the iterative procedure. 

In practical applications, the computation will start by assuming a 
reasonable shape for the first family of surfaces (tyi) and by 

neglecting the contributions of the additional terms. After the 
solutions along this first family are obtained, the flow is 
calculated along the second (i|/2) family of surfaces with an input 

from the first family in order to determine the three-dimensional 
contributions to the equations of motions. After this step, a new 
approximation to the tyi     flows can be obtained and the whole 

computation is continued solving alternatively the flow along each 
set of streamsurfaces until a chosen convergence criterion is 
satisfied. 

This calculation procedure, in a simplified form, is widely used in 
the field of single and (or) multistage turbomachines and will be 
described more in details with regard to computational details and 
additional approximations in part 2 of this report dealing with the 
internal turbomachinery flows. 
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1.2. THE QUASI-THREE-DIMENSIONAL REPRESENTATION (Q3D) FOR INTERNAL FLOWS 
THE AVERAGING PROCEDURE 

As discussed in the introduction, an alternative to the 
streamsurface approach in reducing the complexity of the three 
dimensionality of the flow, can be obtained by taking the average 
of the conservation equations over one of the spatial directions. 
This procedure will lead to exact equations for the flow 
conservation laws in the remaining space variables, reducing in 
this way the flow description to a lower number of space variables. 

Since this averaging technique requires limits of integrations for 
the corresponding variable the method takes its full potentiality 
within the framework of internal flows, such as channel or 
turbomachinery flows. 

Let us consider therefore a channel limiting the flow region by 
upper and lower surfaces, as well as side surfaces, these surfaces 
being either material, solid walls or fluid boundaries, figure 
1.2.1. Average values of any flow variable A over say, the £3 

direction, can be defined through 

bi 
1 

bTFTFTtT A  U\52.S3,t)  d£3 (1.2.1) 

The quantities £3«b,(£>,£2,t) and S'-boU1,C2,t) define the limits 

of the integration region corresponding to the surfaces A^jCjC, 

and B,B2D2D,, with 

b, - b0 (1.2.2) 

(b-A^, on figure 1.2.1).  These boundary surfaces are, in general, 

functions of the other coordinates and eventually of time. Note 
that b is the width of the integration region expressed in units of 

V. 

Relations for the averaged derivatives are obtained as follows : 
from the general properties of the derivative of an integral one 
has, the subscript a indicating either time t or the coordinates Cl 

or £2, 
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b, 

3 A 
o 

1 
b 

3 A d£3 

Pi 

b3o 
A d£3 - J [A (t'.S'.bi.tJJ.b, 

(1.2.3) 
A (t'.^.bo.t) 3 b0] 

J 3  (bA) - I   (A,3 b, - A03 b0) b a      b   'a      a 

where At and A0 are the values taken by the variable A on the upper 

and lower limits of the integration domain. 

Similarly, for a=3, one obtains 

37A = J (A, - A,) (1.2.1) 

On the other hand, the average of a product of two quantities 
requires the introduction of the deviations from the average value 
following 

A = A + A' 
(1.2.5) 

with, by definition 

(1.2.6) 

Hence, one obtains for the average of a product of two quantities A 
and B and for their derivative, the following relations 

AB = A.B + A'B' 
(1.2.7) 

3 AB  =   -   3     (b.A.B)   +   -   3     (b.A'B*)   -   -   (A,B,3  b,   -  A0B03  b0) 
a ba bo bo uua 

(1.2.8) 

where a represents the coordinates £', E,2  or time. 

The boundary surfaces of the integration region will be defined by 

S, = £3 - b, (e'.C'.t) - 0 (1.2.9) 

and 

S0 -•  i3  - b0 U\C
2,t) = 0 (1.2.10) 

for the upper and lower limits respectively. 
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An important simplification of the averaging process occurs when 
the boundary surfaces can be assumed to be streamsurfaces, that is 
surfaces which do not allow any cross-flow. This assumption will 
be satisfied for the solid surfaces bounding a duct or channel 
flow, but is also valid in free surface problems where one of the 
boundaries, represents the time and space dependent free surface of 
an open channel fluid flow, as occurs in river and sea hydraulics 
or tidal flows. 

Expressing that the velocity vector lies at each instant t in these 
surfaces, that is 

d  Q   3S°  • (Z  frc   n (1.2.11) 

along the surface S0, one obtains with (1.2.9) and (1.2.10) the 

relation 

3t>0  - •   n (1.2.12) 
at • v.n0 " 0 

•+ •+ 

where n0=VS0 is the normal to the considered surface. 

The components of n0 along the unit vectors of an orthogonal 

coordinate system are defined by, see equation (1.1.6) 

-1 3b°  -1 Sb°  1 
n° " (h, 3C1 ' h2 3£2 ' h3  

) (1.2.13) 

Similarly, one has for the second boundary 

8b, 

with 

t • •>        n (1.2.14) 

-1 9b,  -1 3b, 

^w^wb (1-2-15) 

With these relations, the averaging rules can be written,  grouping 
(1.2.3) and (1.2.4) as the average of the gradient of a quantity A. 

i*7  1 3 ,wr,  1 r, +T (1.2.16) VA = - V (bA) + - [A.n] b        b 

where the square brackets indicate the difference over  the two 
boundaries 

- 28 - 



[An] » Ajn, - A0n0 (1.2.17) 

The gradient operator is restricted to the two-dimensional space 
S'-52, since 

W (bA) (1.2.18) 

for any averaged quantity A. 

•* 

The same relations apply to the divergence of a vector F or a 

tensor quantity t, that is, 

*.F = M (Fb) • 1 CF.n] 
b       b 

(1.2.19) 

and 

ft - M (bt ) • i [x.n] 
b    a   b 

(1.2.20) 

where T is the averaged value of T.  These averaging rules express 

that the averaged gradients of a flow quantity over a given 
direction are equal to the gradients in the (two) remaining 
coordinates of the averaged quantity weighted by the width of the 
integration region, plus a contribution expressing the balance of 
the normal components of the considered quantities over the two 
boundaries. 

It is essential to observe that the explicit form of the divergence 
operator acting on the averaged quantities, has to be written in 
its three-dimensional form, where all derivatives with respect to 
£3 are set to zero afterwards. 

These two relations, written in operator form, are valid on an 
arbitrary system of coordinates provided the metric coefficients 
are Independent of the integration variable. When this is not the 
case, the divergence operators have to be written first in the 
system of coordinates considered and then integrated over the 
variable E,3. Averaged values of the metric coefficients will then 
appear in the explicit formulation. For instance, if the 
integration variable is the radial coordinate in a cylindrical or 
spherical coordinate representation, an average radius will appear 
in the equations. 

Hence, in orthogonal curvilinear coordinates one has 

v\(Fb) 
1 

hjh2h, 
[3, (h,h2h3b F

1) + 32 (h,h2h,b F
2)] (1.2.21) 

This has to be compared with the streamsurface divergence operator 
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V as defined by equation (1.1.29). 

The explicit occurence of hs in the above equation, explains why 

the quantity b appears in the averaged equations while the quantity 
B-bhj appears in the streamsurface equations of the previous 

section. 

1.2.1.  The averaged form of the continuity equation 

3p    ± •* 
Applying the above rules to the continuity equation rfe    + Vpv - 0 

leads to 

(1.2.22) 
|^ (pb) • $ (pvb) + [pv.n] • Otb0 - 3tb,) = 0 

Expressing that the two bounding surfaces are streamsurfaces, 
equations (1.2.12) and (1.2.14), the averaged continuity equation 
becomes 

f^ (Pb) • ScpTb) =0 (1'2-23) 

Applying equation (1.2.7) to the averaged product pv, leads to 

|^ (pb) • $ (p v b) - - ^(p'v'b) (1.2.21) 

If an integrating factor u is defined such that 

3 i   ,*,^   1 "/" 5N (1 .2.25) -V (p'v'b) « - p(v.V) u 

equation (1.2.24) becomes 

where 

l<£fA+  vTpvB)   ,0 (1'2-26) 

B  - b.u (1.2.27) 

Comparing this with equation (1.1.34), a two-dimensional mass 
conservation equation is obtained where the B-factor represents a 
varying streamtube thickness which is equal to the product of the 
geometrical thickness of the fluid layer over which the averaging 
is performed, multiplied by a correction factor which represents 
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the effect of the mass flux fluctuations over the flow domain. 
Hence, this B factor is dependent on the three-dimensional flow 
properties. 

It is to be noticed that for incompressible flow, there are no 
density fluctuations and hence that B»b. 

The present space averaging technique has strong resemblances with 
the time averaging procedure applied in the study of turbulent 
flows. An elegant way of accounting for the effects of the 
turbulent density fluctuations on the time averaged flow is to 
define density averaged quantities instead of the usual time 
averaged variables. A similar procedure can be applied in the 
present context where the compressibility effects included in B and 
described by the terms in equation (1.2.25) can be absorbed through 
the definition of the following density-average of a variable A, 
see for instance Hirsch and Warzee (1979) 

n.i 
b, 

pA dC (1.2.28) 
b0 

Denoting, in the following, the ordinary average as defined by 
equation (1.2.1) by an overbar and the density averaged values by a 
tilda, one has 

M  I rb, 
PA d£3 (1.2.29) 

p   pb ;b 0 

The fluctuation of the variable A with respect to its usual average 

A is indicated by A1 while A" will indicate the fluctuations with 

respect to the density average A.  Therefore, the following 

relations hold, 

A- A • A- - A • A" (1'2-30) 

with 

A' = 0 

A" # 0 

but 

pA" = 0 

One has also, from the above definitions 

(1.2.3D 

(A - A) - - A" - £-^- (1.2.32) 
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and for the product of two quantities A, B 

pAB » p A B + pA"B" u  "' 

while the above relations for the average of a derivative remain 
unchanged. 

Applying these various properties to the averaged mass conservation 
law, equation (1.2.23) leads to the equation 

|^ (pb) • V (p v b) = 0 (1.2.34) 

writing V for the averaged velocity vector v. 

This exact relation has the advantage that the flow dependent 
streamtube thickness B in equation (1.2.26) reduces here, in all 
cases, to the geometrical thickness b of the flow region in the 5 s 

direction, since the influence of the density fluctuations are 

included in the definition of V. Therefore, if the surfaces b0 and 

b, are not flow dependent, the streamtube thickness of the 

considered fluid layer b»bi-b0 is a known, geometrical quantity. 

This represents an important conceptual simplification of the 
averaged compressible flow equations compared to the previous form 
of equation (1.2.26). 

Comparing equations (1.2.34) with the form of the continuity 
equation (1.1.34) obtained following the streamsurface approach, 
one notices that not with standing the close formal resemblance, 
the former equation describes the two-dimensional evolution of the 
averaged flow considered in the E,1-!,2 coordinate system while the 
latter, equation (1.1.34), describes the evolution of the local 
flow variables followed along a given streamsurface of the 
three-dimensional flow. 

1.2.2.  The Averaged Momentum Conservation Equation 

Considering the differential form of the momentum equation, in an 
absolute frame of reference, eventually as a Reynolds averaged 
equation for turbulent flows 

|^ (pv) +"*V (pv©\ + pi -%) - pf (1.2.35) 

the application of the averaged rules (1.2.16) to (1.2.20) leads to 
the following averaged momentum equation 

|^(pvb)W(pv©vb • pb - Tab) = p?e.b - [pv (v.n - f£)]-[pn] • [t.n](1'2'36) 

writing x for the averaged viscous shear stress tensor, plus s 
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eventually the Reynolds stress tensor. 

The first term under brackets in the right hand side vanishes when 
the streamsurface assumptions equations, (1.2.12) and (1.2.1*0, are 
satisfied. Otherwise they contribute to an impulse flux through 
the boundary surfaces. The last two terms represent the components 
of an additional force term which appears as an outcome of the 
averaging procedure in a way that completely parallels the way the 
additional force appears in equation (1.1.52) derived in the 
streamsurface approach. The force term, defined by 

p f - - g [o.n] = ^ [(pi - x).n] (1.2.37) 

results from the difference in the normal components of the 
pressure and shear stresses acting on both limiting surfaces b, and 

The close resemblance between the two expressions of the extra 
force term equation (1.1.52) and (1.2.37) is obvious, so more that 
they become identical if the averaging is performed over an 
infinitesimal distance d£3-b, with metric coefficients independent 
of £J.  Hence, equation (1.2.36) becomes 

f-(pvb) + $ (pv(x)v b) = + v* (o .b) • pf b + pfb 
(1.2.38) 

writing o for the averaged shear stress tensor o. 
3 

If the averaging rule of products, equation (1.2.33) is introduced 
with density weighted averages, one obtains the following equation 

-• 
+ ~ 

for the density averaged velocity vector V=v, 

|^-(pVb) • $ (pbV0V) = + $ (o .b) • pfeb • pfb - $ (pv"@v"b)  (1-2-39) 

or alternatively, taking into account the averaged continuity 
equation (1.2.3*0, 

IT- tf • (V.v1) V - - — $ (o .b) • f + f - — $ (pv"(x)v"b)    (1.2.140) 
bp bp 

This last equation can be made formally identical to the standard 
-• 

two-dimensional momentum equation,  by introducing the force f 
f B 

instead of f, with 

pb fD - -(pf - T ).Vb + pbf (1.2.1J1) 
u        a 
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leading to 

!£ + ($.$) V = ^- $ (pi - T ) • f • fn - — v1 (pv"(x)v" b)    (1.2.42) ot p a    e   D  . -      ^-^ 
bp 

With the exception of the last term, this equation and equation 
(1.1.58) obtained by following a streamsurface, have very similar 
forms, although the interpretations of each term differ by the fact 
that here local derivatives of averaged quantities appear while in 
the former approach one has to do with streamsurface derivatives of 
the local flow quantities. In both cases however, the 
quasi-three-dimensional approximation leads to the introduction of 

variable streamtube thickness (B or b) and to additional forces f 
whose non-viscous components act in the direction normal to the 
considered surfaces. 

In the present approach an additional term appears on the right 
hand side of the momentum equation. This term, which has the same 
structure as the Reynolds stress tensor in the turbulent averaged 
Navier-Stokes equations, contains the influence of the 
three-dimensionality of the flow on its averaged representation. 

It is to be kept in mind that the v" components of the velocity 
field represent the deviations from flow uniformity in the £' 
direction and can therefore be considered as large scale velocity 
fluctuations around the averaged flow. 

Hence, the products pv" x v" are an expression of the large scale 
momentum transport around the averaged flow and its gradients act 
as a diffusion effect on the resulting averaged momentum.  If the 
flow is mildy non-uniform in the averaging direction these terms 
may become neglectable with respect to the other terms.  If not, 
they can only be evaluated through a knowledge of the flow in a 
family of surfaces containing the ^'-direction.  In the following 

-S 
we will designate these terms as secondary stresses T 

-S . _„,%**,% (1 -2.43) •pv" 0v" 

1.2.3. The Averaged Energy Conservation Equation 

The energy equation can be derived in the same way as described 
above using the local form, corresponding to equations (1.1.62) to 
(1.1.64) 

l^-(pE) + $ (pvH - G) = Q (1.2.44) 

where G is the flux of the shear stresses work and heat conduction 
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G=kvT+ =x.v (K2-1,5) 

The averaging procedure leads to the following form of the averaged 
energy equation 

f^ b) • v[(^ - £)b] = Q.b - Cp |^3 • [G.n] - [pH (v.n - §£)]  <1-2-"6> 

The last term vanishes when the boundaries are streamsurfaces, 
following equations (1.2.12) and (1.2.11). 

Two additional contributions to the averaged energy balance appear 
in the right hand side as source terms. The first one 

r  9b-,      *b°      3b' (1.2.K7) 

is the work of the pressure forces against the moving boundaries, 
while the second term 

[G.n] = [(kVT • t.v).n] U.^.io; 

is the transfer of heat flux and work of the viscous stresses 
accross the boundaries of the integration region. These two terms 
will be grouped in the source term 

b Qb » [G.n] - [p !£] (1.2.19) 

When the averaged products on the left hand side are worked out, 
one obtains 

|^  (pEb)   +  vT(pVH - G)b]  = Q.b  • Qb.b  -  v1  (bpv"H") (1.2.50) 

or by application of the averaged continuity equation 

p  [f£ *   (V.v)   H]   =  1 |^(pb)   •  I v  (Gb)   * Q  +  Qb -  £ v"  (b  pv»H»)       <1'2-51) 

This form of the averaged energy conservation equation parallels 
completely equation (1.1.68) obtained by the streamsurface method 
with the difference in interpretation already discussed above for 
the momentum equation.  An additional energy flux term appears, 

pv"H", which represents the effect of  the  total  enthalpy 
fluctuations as convected by the large scale velocity fluctuations. 

Making use of the equations (1.2.12) and (1.2.14). the additional 
source term Q. can be written as follows 

b 
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1 .-. *= •. •     *  •*•, 1 -      ±     •« 
Qb • b C(T-v)-n " P n-v] + b tk 'T'n] 

or 

Qb " b [(*'")'^ " P «».v] + J Ck ^T-"^ (1.2.52) 

In general circumstances, the first term of equation (1.2.52) shows 
that the additional heat source Q. arises from the difference in 

b 
the work of the shear stresses and pressure forces along the two 
limit surfaces b0 and blf  in addition to the balance of heat 

conduction through these two surfaces. 

An interesting particular situation occurs when both end-surfaces 
-• 

b0 and b, have the same velocity, say vc.  In this case, the first 

term of Q. represents the work of the additional force f, equation 

(1.2.37), acting on the moving boundary surfaces, 

Qb " b [*'" " p-"]-^s + b Ck ^T*"-1 

or 

Qb ' ^'*s + 5 [k 'T'"] (1.2.53) 

A typical situation of this kind occurs in the passage between two 
blades of a rotating turbomachinery blade row. 

The averaged energy equation can be put under different forms, when 
the stagnation enthalpy fluctuations H" are separated into the 
static enthalpy fluctuations h" and the contributions from the 
kinetic energy. 

The total enthalpy fluctuations can be written as 

>  ->   ylli (1.2.54) 
H" - H - H - h" • v".V + — -  k u.tf.aij 

where the average kinetic energy of the velocity fluctuations is 
introduced, 

v".v"  -TTT (1.2.55) 
p k - p —^— * Pk 

Referring to equation (1.2.50), the last term of the right hand 
side becomes after introduction of equations (1.2.54) and (1.2.43) 
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«S +   • v"2 (1.2.56) 
pv"H" - pv"h" - T .V • pv".| 

•S 
where T designates the secondary stresses (1.2.143) 

The energy equation (1.2.50) becomes 

%* 
|^-(pbE) + $ (pVHb) - $ [Gb - pv" (h" + ^-) b] + $ (bVtS) • b (Q • Qfe) 

(1.2.57) 

MC 
^(v.T • V.TS - pv"h" + —^ h -  pv"k")b + b(Q • Q ) 

r 

Note the appearance of the energy due to the work of the secondary 
=S + ft * »S 

stresses T  against the averaged flow field V, V(V.T ), in the 
right hand side as well as the transport of total energy of the 

fluctuations (h" • v"2/2) by the large scale fluctuating flow field 

If the deviations from the average velocity are small, this last 

contribution, being of third order in v" might be neglectable 
-S 

compared to the work of the secondary stresses T against the mean 

flow V.  In addition, if the work of the fluctuating viscous (and 

turbulent) shear stresses is neglected v"!1 • 0, then the averaged 
energy equation (1.2.57) simplifies to 

uc 
|^(pbE) • v^pVHb) = VT(V.TT - Pv"h" • -p2 fr)b] * b(Q + Qfa)    0-2.58) 

where the total shear stress appears as the sum of the viscous 
(plus turbulent) and secondary stresses 

T
T
 =• T • T

S (1.2.59) a 

One can also introduce the total energy of the averaged flow 

H = n + |1-. H-££l> = H-k (1'2'60) 
2
        2p  " 

into equation (1.2.57), in order to obtain an equation for H. 
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1.2.14. Crocco's form for the averaged momentum equation 

If the entropy relation is averaged over the width b of the channel, one 
obtains from equations (1.2.7), (1.2.16) and (1.2.33) 

pTvs- pvh- vp (1-2'61) 

or 

pT.vs - p.tfh - V*p - (pT)»'(^s)" • p'(^h)' (1.2.62) 

leading to 

T v^bs) - V(bh) - ; v^bp) + [(h - § - Ts)n] - z   (pT)'(Vs)' + p' (vh)' (1.2.63) 
P p        p 

-» 
or, grouping the three last terms into a force term bf , 

T V*(bs) = v"(bh) - - $(bp) + bf* (1.2.64) 
-        s 
P 

Eliminating the pressure term with the help of equation (1.2.64), one 
obtains Crocco's form of the momentum equation for the averaged flow, 

•* •> 

|f - V x <; - TVs - VH • i V.T • f • f« (1.2.6b) 
dt e   s 

P 

with 

pbf* - (f - f )pb + p(Ts - h)^b 
S 3 

(1.2.66) 

[*.n]+[(Ts - h)n]p + b(pT)'(^s)* - p'tVh)') + p(Ts - h)vb 

and 

v"xv (1'2'67) 

Observe that the pressure term is eliminated from the new force term f, 

and the appearance of H, the total energy of the average flow, instead 

of H. 
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STREAMSURFACE APPROACH AVERAGING APPROACH 

CONTINUITY EOUATION 

-2- (oB) • 7(p v3) - 0 •^ (pb) • V(pV'b) - 0 

MOMENTUM CONSERVATION EQUATION 

-^T (pBv) + 7 [ (pv • V • pi - ') B J - pB?e + PB? 

of - - | 33 f (pi - T).n 1 

-^- (pbv") • 7K0V""-1?-" ) b) -pbf  + pbf  - 5(pv" • v"b) 

of - ^-l (pi - ").n ] 

ALTERNATIVE FORMULATION - NON-CONSERVATION FORM 

•^ +  (v.V)v - - - V(pl - ") • ?  • f 

?B - f " ^g (pi - ").7B - - n33 (p! - ") 

-^ *(vf.7)v" - - i 7(^1 -")+? •?.- — 3(pv" • v"b) at 

f - f - — (pi - * ).vb 
B    Sb 

bo 

CROCCO'S FORM 

-^ -  v  x  I  • TVs   -   7H + - V."  •   f    •  f„ 
Jt p e B 

C  •   V x  v 

1? - 7 x  ? - T^ -   VH  • i   7."T  • t    • V 
3t s o • s 

7x V" 

ENERGY CONSEKVATION LAW 

—  (cEB)   +   V   KpvH  -  kVT  -   T.V)B I    -  Q.B  +  Q.B 

VsV (k^ + '•*** 1 

^r (p£b)  •  V(DV^ - G)b - O.b -  7(pv"H"b)  • Qh-b at 

Qb- ltd.nl   - 

5    -  kvT   •   T.V 

F'P  3t 
3 b] 

NON-CONSERVATIVE  FORM 

O("H * ^')H"it p * '(k^T * "•*> * °- + % 

QB  -  n.S3   (k7T  +  T.V) 

0 iff*   (v.V)lll     - ££-<pb>   • f V(Gb)   •  Q  •  Qfe   - i 7(pv"H"b) 

NOTATIONS 

.,,   °r The  operators  7  •   iit,   37)   are  defined by 

7  -  7  - nV 

where n is the normal to the surface 

The averaged quantities are defined by 
b. 

PA oA dC" 

where t,     is the averaged coordinate direction 

b - (b - b ) 
1   o 

V is the averaged velocity 

1 A] A. - A 
I    o 

Table   I. : Quasi-Three Dimensional Formulation.  Streamsurface and averaging approach 



SUMMARY 

The system of equations obtained by following the flow along a 
streamsurface, or the system of equations found by averaging the 
conservation laws over a chosen direction lead to two equivalent 
representations of the two-dimensional restriction of a 
three-dimensional flow. The former approach defines a rigorous 
iterative procedure between two families of streamsurfaces allowing to 
reconstruct the complete three-dimensional flow. On the other hand the 
averaged equations define a "mean" flow in the two remaining coordinates 
and time, which is not associated with any particular streamsurface. 
The solution of this two-dimensional mean flow requires however 
informations from the three-dimensionality of the complete flow, as 
expressed by the additional force and energy source terms but also by 
the averaged products of velocity and energy fluctuations around the 
averaged flow quantities. 

The quasi-three-dimensional approximation will consist in introducing 
some assumptions about the unknown contributions from the 
three-dimensionality by imposing for instance, a given shape for the 
(unknown) streamsurface along which the flow is followed or by 
neglecting certain terms in the equations related to the additional 
fluxes introduced through the averaging procedure. In both cases, the 
simplest approximation consists in keeping only the influence of the 
varying streamtube thickness B or b, and neglecting all other 
influences. 

Both approaches are applied in the field of internal flows, such as 
turbomachinery and channel flows, while the averaging technique is 
widely applied in the field of hydraulics, in particular in the analysis 
of tidal flows of rivers, estuaries and seas. Table 1.1 presents a 
summary of the flow equations as derived from the two approaches. 
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Figure 1.1.1. : General configuration of a channel flow 

Figure 1.1.2. : Turbomachinery blade passage 
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Figure 1.1.3. : S surface generated by £' and E,2  lines and defined by 
£3 - constant. 
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Figure 1.1.4. : Elementary volume of a streamsheet of thickness B. 
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Figure 1.1.5. : Divergence of streamsheet and relation to thickness variation 
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Figure 1.2.1. : General configuration of a channel passage 

^ 



PART 2 : THE COMPUTATION OF TURBOMACHINERY FLOWS 

The second part of this report is devoted to a presentation of some of 
the computational models and techniques used in the prediction and 
analysis of multistage turbomachinery flows. 

Turbomachinery internal flows constitute one of the most complex flow 
patterns in the field of technology. The detailed flow behaviour within 
a blade row is mostly strongly three-dimensional, viscous dominated, and 
often influenced by the presence of shock waves. Figure 2.1.1 is a 
sketch of the typical flow phenomena in a compressor blade passage, 
where the various contributions to the overall flow picture are 
illustrated. Due to the turning of the flow through the blade passages, 
an initial boundary layer along one of the end walls of a blade row will 
generate streamwise vorticity within the passage, through the secondary 
flow mechanism, and give rise to additional three dimensional effects 
which can become predominant (as in turbine blades with high turning 
angles), creating an interaction between the viscous regions and the 
three-dimensionality of the flow. Another aspect of these phenomena can 
be found in turbines, where the thick leading edges of modern turbine 
blade sections generate horse-shoe vortices in the inlet regions which 
influence strongly the internal passage flow. This is illustrated in 
figure 2.1.2, showing a visualization of these flow structures. In 
addition, the clearance space between blade rows and casing (or hub) 
walls generates leakage flows and local vorticity. Furthermore, in 
modern, high performance machines the flow reaches supersonic velocities 
with the consequence of the appearance of shock waves, shock boundary 
layer interactions and choking phenomena. Figure 2.1.3 represents a 
typical flow pattern in a two-dimensional tip section of a transonic 
compressor fan as determinated experimentally and figure 2.I.U shows a 
possible model for these complex processes. 

Even in steady rotating machines, the wakes of an upstream blade row 
create an unsteady incident flow on the subsequent blades due to the 
relative motion between rotors and stators. This adds to the overall 
complexity of the flow, making it a formidable challenge for the 
developer of computational prediction tools. 

The above figures represent typical flow patterns in single blade 
passages. In multistage configurations, figure 2.1.5, the accumulation 
of these effects can lead to severe deterioration of initially uniform 
velocity profiles over the height of the blades, even when 
circumferential averaged profiles are considered. Figure 2.1.6 
illustrates some aspects of the flow migration as visualized by the 
stagnation pressure distribution in a multistage compressor. The 
isopressure lines show the distribution and concentration of losses in 
the exit plane of this blade row. 

Notwithstanding these complexities, the design process requires the 
ability to predict, at least in some approximate way, the flow behaviour 
in a multistage machine in order to optimize the performance and to be 
able to localize the sources of dissipation and energy losses. In view 
of the complexity of the flow, the computation of a flow structure such 
as depicted in figure 2.1.1 requires high levels of approximation of 
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flow models, such as is the full Navier-Stokes equations with adequate 
turbulence models for the Reynolds averaged formulation. Methods able 
to predict aspects of the viscous three-dimensional nature of the blade 
row passage flow are appearing, and will be used at increased rates in 
the future. However, these computations, very instructive at the single 
passage level, will not be able to be used currently in initial design 
processes of a multistage machine, at least in the foreseeable future of 
computer resources. Therefore typical multistage, simplified models 
have been developed in order to single out an approximate view and 
prediction of the main aspects of the turbomachinery flow. 

For instance, one of the aspects of the simplified models deals with the 
properties of the flow averaged over the blade spacing in the 
circumferential direction, that is in the direction of the blade 
rotation. This passage-averaged flow can be considered for a rotating 
blade row, as the flow seen by a fixed observer, attached to the stator 
blade rows, looking at the rotor flow. Referring to figure 2.1.1, if 
the flow is averaged at a given spanwise position over the blade 
spacing, the details of the internal three-dimensional flow 
configuration are lost, but instead, a two-dimensional flow distribution 
in function of mainstream and spanwise coordinates is obtained. Of 
course, the lost information will have to be supplied by some form of 
empirical input as will be discussed in the following. This 
passage-averaged flow actually removes the secondary and 
three-dimensional flow details as well as any flow distribution in the 
blade-to-blade direction. It represents therefore an axlsymmetrio 
approximation of the real flow and is called the meridional 
through-flow, or radial equilibrium flow. From this point of view, the 
alternative representation of the through-flow by the flow projection 
along one representative streamsurface of S2-type shown in figure 1.1.2, 
is an equivalent approximation and either the stream-surface approach 
discussed in section 1.1 or the averaged formulation of section 1.2 can 
be used. Hence, the flow description in rotating machines will rely on 
the quasi-three-dimensional spatial approximation described in Part 1. 
Indeed, if the through-flow is determined, it can be coupled to flow 
computations in the blade-to-blade surfaces, of the S1-type of figure 
1.1.2, in order to reconstruct an approximate picture of the 
three-dimensional flow. A still further step consists in determining 
the through-flow along various S2-type of surfaces attempting in this 
way to reconstruct the secondary flow pattern in the blade passage. 
This last step can be considered for simple blade passages but is seldom 
performed in multistage configurations. A more frequent approach 
towards this goal consists in computing separately the secondary flow, 
see for instance Atkins and Smith (1983), based on inviscid secondary 
flow approximations as developed by Hawthorne (1955), Smith (1955), and 
many others. The interested reader will find an excellent and rigorous 
presentation of secondary flow theories in Horlock and Laksminarayana 
(1971). In all these approaches the flow is decomposed in combinations 
of two-dimensional flow components which can be reconstructed in a 
quasi-three-dimensional way, but which are individually easier to solve. 

Consistent with these views and with the loss of information attached to 
the axisymmetric or passage-averaged approximation, the details of the 
viscous effects and mechanisms are smeared out and the appropriate 
approximation which fits into this framework is the distributed loss 
model.  In this model,the viscous stresses are replaced by an external, 
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distributed friction force which is responsible for the overall energy 
losses. The lost information with regard to the viscous shear stresses 
will have to be replaced by empirical informations defining the energy 
losses as expressed by the entropy production at the level of the 
through-flow computations. In a full quasi-three-dimensional 
computation this information might also be provided by two-dimensional 
blade-to-blade viscous flow calculations including estimations of the 
three-dimensional effects on the loss distributions. 

The flow models for multistage turbomachines are therefore defined by 
the combination of the quasi-three-dimensional representation with the 
distributed loss model. Since the distributed loss model is essentially 
a non-viscous model, coupling with boundary layer computations can be 
added, in particular in the through-flow, where the interaction with the 
end wall boundary layers is an important aspect of the overall 
prediction schemes, Mellor and Wood (1971), Hirsch (197*0, De Ruyck, 
Hirsch and Kool (1979), De Ruyck and Hirsch (1981), (1983). 

Section 2.1 will summarize the system of equations used in the 
turbomachinery flow models namely the distributed loss model. The 
following sections will discuss and define the quasi-three-dimensional 
formulation and the two options, the streamsurface approach or the 
averaging technique will be developed in sections 2.2 and 2.3 
respectively, and the differences and similitudes pointed out. Section 
2.H will describe the through-flow computational techniques. These 
include the widely used streamline curvature method as well as the 
methods based on the streamfunction formulation discretized by finite 
differences or by finite elements. 

The interested reader may also find some general reviews of 
computational methods, aimed at turbomachinery flow applications, in 
Japikse (1976) and more recently in McNally and Sockol (1981). 
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2.1.  THE DISTRIBUTED LOSS MODEL 

The distributed loss model retains, from all the effects of heat 
conduction and viscous shear stresses, the contributions to the entropy 
production. That is, the dissipation or energy loss resulting from the 
frictional action of the shear stresses is considered as the dominating 
contribution.  As a consequence, this action is  expressed  by a 

distributed friction force Ff defined at 

every point in the flow field. From a theoretical point of view, the 

friction force F~ is equal to the gradient of the shear stresses, 

pFf = V.T (2.1.1) 

and the contributions of heat conduction and of the work of the shear 
stresses to the overall energy balance are either separately neglected, 
or considered to cancel each other , 

hkTh)   + V(T.W) - 0 (2.1.2) 

The contribution to the entropy production reduces to the work of the 
friction force as given by 

T^«-w.Ff (2.1.3) 

where F is considered to be in the direction opposite to the relative 

velocity vector w, and is defined by this relation instead of equation 
(2.1.1). 

With 

Ff = -Ff.Tw (2.1.4) 

•+ •+ 
where 1  is the unit vector in the direction of the velocity w, equation w 
(2.1.3) becomes 

T 2J = wF„ (2.1.5) dt    f 

Hence, the entropy equation (2.1.5) is added to the system of flow 
equations as an independent equation and subsequently, one of the three 
components of the momentum equation is redundant and can be left out of 
the system. 
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With the neglection of heat conduction effects, of external forces f 
e 

and of external heat sources q„, the system of flow equations within the 

distributed loss model will be defined in a relative reference system 

rotating with a constant angular velocity u> around an axial direction. 
-» -•  + 

At a radius r, the relative system has a rotation speed equal to u » <D X 

r.  The system of equations, defining the turbomachinery flows within 
this approximation level, is therefore 

§£ • vXpw) - o (2.1.6) 

|2- wx t  -Tvs- $!• ?f 
(2'1-7) 

M •<*•*»-*!! <2-i-8) 

|| • (w.v^s " f . Ff (2.1.9) 

The rothalpy I is defined as 

w2       u2       u       • • (2.1.10) 
I=h+2  s- - H - u.v 

in function of the static enthalpy h or the stagnation enthalpy 

H=h+^ 
(2-1'11) 

and c is the vorticity of the absolute flow v, 

•  3  • (2.1.12) 
X,   - V X V 

Equation (2.1.7) is in Crocco's form and is most useful in the 
computation of turbomachinery flow because of the direct use of the 
energy equation (2.1.8) and of the entropy equation (2.1.9). However 
the standard form of the momentum equation can also be applied and an 
alternative form of the above system is provided by the equations in 
conservation form. 

f£ • V(pw) = 0 (2.1.13) 

7T- (pw) + V(pw0w) - -Vp - 2p(w x w) - pto x (w x r) + pF     (2.1.11) 

- 50 - 



|r (pi) • ftpwl) - f£ (2.1.15) 

|^ (ps) + v^pws) -  !j pFf (2.1.16) 

The fluid constitutive equation has to be added to the above system and 
in the following, the perfect gas model will be considered as 
representing with sufficient accuracy the fluid state. This is a good 
approximation for gases and can be used also for steam, at least for dry 
steam. For saturated steam the steam tables have to be used, but one 
can still in this case refer to the perfect gas model approximation, at 
least locally. 

Hence, with the perfect sas law p/p=rT the entropy variations are 
connected to the variations of stagnation pressure p0 and stagnation 

temperature T0 

dT0    dp0 
ds = c -^r- -  r — (2.1.17) 

p T0     p0 

Note that all equations are written here in the relative system, that is 
-• 

for a rotor flow.  The stator flows are obtained by setting u»0, and 

from the velocity composition law, 

* (2.1.18) 
v = w + u 

w is to be replaced by the absolute velocity v. 

Equation (2.1.7) shows that the multistage turbomachinery flow models 
can be considered as basically invi3cid,  as they do not contain 

-• 
explicitly shear stress gradients and Ff is considered as an external 

friction force defined by equations (2.1.M) and (2.1.17) when 
information is provided with regard to the stagnation pressure losses. 
In addition, the momentum equation (2.1.7) also shows that the general 
flow pattern will be rotational due to the gradients of entropy, the 
gradients of total energy, or rothalpy I, and due to the presence of the 

•* 

distributed friction force F . 

Incompressible flows 

For hydraulic turbomachines such as pumps and hydraulic turbines, the 
incompressible fluid approximation is best adapted. In this case, the 
system of turbomachinery flow equations simplifies, with p-constant, to 

v-.w-O (2-K19) 
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|_ gi .  1 (S.,)p. . .^ (2.1.11) 

where p* is the rotary stagnation pressure defined by 

n*  n + „ "*  o "2 (2.1.22) p».p+p_  p__ 

Note that (2.1.21) is obtained from (2.1.20) by scalar multiplication 

with the relative velocity w and is therefore not an independent 
equation. This equation replaces the entropy equation (2.1.9). 
Actually, equation (2.1.21)  is used to compute the friction force Ff 

through the knowledge of the rotary stagnation pressure loss 
coefficients which have to be provided to the calculation procedure. 

Compared to the compressible system of equations, (-p*) plays the role 
of the entropy since p* decreases in the downstream direction as can be 
seen from equation (2.1.21) in steady state flows. 

Steady Flow Assumption 

It is also customary, in the field of turbomachinery, to assume that the 
relative flow is steady for constant rotation speed of the machine. 
This will be the case if the inlet flow is uniform in the tangential 
direction, which implies that the effects of the wake of upstream blade 
rows are neglected. Indeed one has the following relation between the 
local time-dependency in the relative and absolute systems 

9£ 
at 

ia 
3t 

- a) |^ (2.1.23) 

when 9 represents the angular coordinate in the wheel speed direction 
and A and R denote absolute and relative systems respectively. 
Therefore, if the absolute outlet flow from a preceding stator is 
steady, the flow relative to the rotor will be steady if the stator 
outlet flow is uniform in the tangential direction. This will generally 
not be the case, due to the presence of wakes and other 
three-dimensional effects, and hence the physical flow always contains 
unsteady components. A recent detailed experimental investigation 
performed by Dring et al.(1982) clearly shows the importance of the 
unsteady flow and pressure variations, although the time average flow 
was observed to be in good agreement with the steady state predictions. 
Another source of unsteadiness is due to the inviscid upstream 
propagation of pressure waves from a moving rotor to an upstream located 
stator. This effect, of subsonic nature, can be locally important on 
the loading of the stator trailing edge or on the heat transfer 
coefficients and exists even for uniform tangential flows. Therefore, 
the detailed interaction between two consecutive blade rows is always 
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unsteady. However, if one neglects this interaction or if time averaged 
flows are considered, the steady state assumption becomes a valuable 
approximation. 

In this case, the distributed loss model simplifies to 

v-(pw-).0 (2'1-2M) 

-w x I  = TV's - $1 + Ff (2.1.25) 

(w.v)!=0 (2'1-26) 

(w.V)s = ^ Ff (2.1.27) 

for a compressible fluid. 

In particular the energy equation takes the simple form of constancy of 
the rothalpy I along a streamline. 

This is nothing else than the Euler equation for the energy exchange in 
a rotating blade row.  If subscripts 1 and 2 denote respectively the 
inlet and outlet planes of a rotor then from I-constant one has indeed, 

AH = H2 - Hi = (uv )2 - (uv ), = A(uv ) (2.1.28) 

where v  is the projection of the absolute velocity v on the direction 
•*•*•-* 

of the rotor velocity u = w x r. 

As is well known, the stagnation enthalpy variation AH is the power per 
unit of mass flow exchanged between the fluid and the rotor blades. 
This most widely applied equation, which allows the determination of the 
power and of efficiencies, from the knowledge of the flow velocity 
components, is therefore only strictly valid for steady relative flows. 
The complete energy equation in the relative system, contains also the 
effects of heat conduction and of viscous energy exchange between 
streamtubes described by the two terms of equation (2.1.2). 
Hence, it is essential to keep in mind that the Euler equation for 
turbomachinery rotors is an approximation, valid for steady, inviscid 
behavior. The viscous interactions and unsteadiness which are always 
present to some degree in turbomachinery flows, introduce variations in 
rothalpy along flow paths. This is of importance when assessing the 
results of computations based on the simplified flow model described 
here. It is known from experimental observations and from comparisons 
with fully viscous computations, Moore and Moore (1980), that the 
overall incidence of these effects can reach a few percent on global 
energy exchange estimations, but might still be more important locally 
in regions of high viscous effects, for instance in end wall-blade 
corners and tip regions. For an incompressible flow, one obtains 
similarly the steady flow model defined by the equations 
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$.w =  0 

-»      •+ 
•w x  C -   Up*  •   Ff 

(w.$)p*/p   =   -wF 

(2.1.29) 

(2.1.30) 

(2.1.3D 
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2.2. QUASI-THREE-DIMENSIONAL APPROXIMATION FOR TURBOMACHINERY FLOWS 
THE STREAMSURFACE MODLL       : ;       :    ~~ 

According to the considerations developed in chapter 3, two ways are 
open in order to introduce a quasi-three dimensional approximation of 
the turbomachinery flows. 

Either one can follow the flow along families of streamsurfaces, defined 
by the positions occupied by the fluid particles lying initially on a 
given line in the inlet section of flow passage, or one can consider the 
averaged flow over a selected direction and calculate this averaged flow 
in function of the remaining (two dimensional) variables. 

Both methods will be developed here, since they form two equivalent 
formulations for through-flow and quasi-three-dimensional computations. 
The first approach, introduced by Wu (1952), has been applied by a large 
number of authors, among which Katsanis (196*0, (1966), Novak (1967), 
March (1968), Frost (1970), Adler and Krimerman (1974), Biniaris (1975), 
Novak and Hearsey (1977), Bosman and El-Shaarawi (1977). A more 
complete list of references, including program development descriptions 
which have been published outside the journal literature can be found in 
the review article by G. Serovy in the AGARD report, edited by Hirsch 
and Denton (1981). The second approach is applied essentially by Smith 
(1966), Hirsch and Warzee (1976), (1979), Jennions and Stow (1984). 

Two families of surfaces are generally considered of the form 
illustrated in figure 1.1.2. The S1 family is of the blade-to-blade 
type and can be considered as generated by the particles situated 
initially on a line at a constant radius r. The S2 family is generated 
by particles located initially on a radial line and is designated as a 
hub-to-shroud surfaces. Due to the axisymmetry of the geometry the 
cylindrical coordinate system is most appropriate as reference system 
with the z-axis aligned with the axis of the machine and the angular 
coordinate 6 defining the direction of the blade rotation. In the 
following, the blade rotation direction will be selected as the positive 
8-direction and this will also serve as the positive direction for the 
blade and flow angles. 

The general form of the streamsurface equations have been derived 
earlier and are summarized in Table 1. For a streamsheet thickness B, 
the conservation equations obtained by following the flow along the 
considered streamsurface can be written in a two-dimensional space 
defined by this surface. 

In accordance with the distributed loss model, heat conduction and shear 

stresses are neglected, but a friction force F is added to the external 

forces. In addition, we consider the flow relative to a rotating frame 
of reference. As a consequence, centrifugal and Coriolis forces have to 
be considered in the streamsurface momentum equations and the stagnation 
enthalpy H is replaced by the rothalpy I in the energy equation. 

This leads to the following system of equations valid on a 
two-dimensional streamsurface. Overbars on the gradient operator 
indicate that the derivatives are defined by following the surface of 
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normal n. 

For a strearasurface S defined by V'V(V ,*.*) in a 5 -coordinate system, 
the derivatives along the surface, indicated by an overbar, are given 
by, with 3, representing 3/3S3 

5   £   + * (2.2.1) Vg - Vg - n 3sg 

and we refer to Part 1 for a detailed analysis. The normal n is defined 
by its components n with 

n0 - (- ||i , - ||i , 1)        0-1,2,3 (2.2.2) 

Written in the relative system one obtains the streamsurface formulation 
of equations (2.1.13) to (2.1.16), see Part 1 for a full derivation and 
Table 1 for a summary. 

Continuity equation 

|^ (pB) • V (pwB) - 0 (2.2.3) 

Momentum equation 

|r (pBw) • V[(PHJW + p)B] - [(Ff + f - 2wxw - w x (wxr)]pB     (2.2.4) 

or 

f^w- wxc-TVs- VI • ?f • ?B 
(2-2'5) 

Energy equation 

|_ (pBI) + ? („.&, . iiEBi (2.2.6) 

Entropy equation 

|^ (pBs) • V (pBws) - * pBFf (2.2.7) 
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The additional body force ? is defined by equation (1.1.55) 

pfD - -n . 3,p (2.2.8a) 
D 

if the metric coefficients do not depend on £3, see equations (1.1.57), 
and 

it VB (2.2.8b) 
Pf - pfB * P g- 

The 3treamsheet thickness B is related to the three-dimensional flow 
behavior by equation (1.1.35) or equation (1.1.MO) for b-B/h,, where h3 

is the metric coefficient corresponding to £3 in the curvilinear, 
a 

orthogonal system 5 . 

VB . -                         (2.2.9) — - - 3,n 

1 ,+ s,. ~ a     a  .                (2.2.10) r (w.V)b - + n . 33w = - w . d3n b          a a 

where the summation convention on the repeated index a  is assumed. 

Note that the absolute vorticity c is defined by 

The hub-to-shroud equations on the S2 surface are obtained by applying 
the above equations for surfaces E,3    » 6 = 6(r,z), while the S1 
blade-to-blade flow equations will be obtained by setting for instance 
S3 - r - r(6,z). 

2.2.1. Equations for Hub-to-Shroud S2 Surfaces - Through-Flow Equations 

In the selected cylindrical coordinate system 8 = 8(r,z), the absolute 
•• •* 

velocity vector v and the relative velocity w are defined by their 
projections along the radial, axial and circumferential (or tangential) 
directions, 

•*•*•* + 
v - v 1  + v 1  • v„1 

•  I\      Z\ <2-2-12> 
u = u)xr»u)r 1 
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Hence, the relative velocity components are given by 

v • v 
r r 

w, - v, (2.2.13) z z 
wQ - vQ • u>r 

The components of the normal n to the streamsurface 9 = 6(r,z) are 
•ct •*  •*  1 • 

defined in the natural coordinate system e , that is (1 , 1 , - 1„), see 
 •  r  z r 6 

example E.1.U, by 

ne"1 

nz--|| (2.2.1"*) 

9b n = - r— 
r    3r 

and the streamsurface derivatives are 

3r " 3r ' nr ' 36 " 3r + ^3r; * 3a 

3_  3_      3_  3_  .36,.  3_ 
3z "  3z " nz ' 36 = 3z + ^3z; ' 36 

(2.2.15) 

Geometrical Definition of S2-Surfaces (Hub-to-Shroud surfaces) 

It is common practice to define the surface S2 by angles $'  and e'.  The 
intersection of S2 with the (r,6) or z - constant plane, makes an angle 
e* with the local radial direction and the intersection of the surface 
with a cylindrical, r = constant surface, is at an angle 6' with the 
axial direction, figure 2.2.1. 

+ 
These angles are related to the components of the normal vector n, since 
they define uniquely the local orientation of the streamsurface. They 
are defined by, referring to figure 2.2.1, 

36 
r -r- - tan e' - -rn (2.2.16) or r 

r •£ -  tan 6' - -rnz (2.2.17) 

and the n vector is obtained, following equation (2.2.11), as 

•      1 •     1 •     1 •     1 (9 9 lA) 
n - - i tan e' . 1 - ; tan 6' . 1 • ; 1. - J n        U.z.io; 

r        rr        zr.e—r 
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We will assume in the following that the S2 surface is time independent. 
The condition for this surface to be a streamsurface is 

•  *  . (2.2.19) n . w - 0 

With equations (2.2.16) and (2.2.17), the relation between the velocity 
components valid on S2, is obtained 

wQ = w tan 8' + w tan e' (2.2.20) 
8   z r 

If an axial flow angle 8 is introduced on a cylindrical surface of 

constant radius r, figure 2.2.2, by 

tan 8 = w./w (2.2.21) 
D    Z 

and a meridional angle o in the meridional plane (r-z) by 

tan o = w /w (2.2.22) 
r z 

one obtains the relation 

(2 2 23} 
tan 8 = tan 8' + tan o . tan e' "  D 

Generally, a flow angle 8 is defined with respect to the meridional 
velocity component w , making an angle o with the axial direction, 

w = /w 2 • w 2 (2.2.24) m    r    z 

w 
tan 8 = — (2.2.25) w 

m 

Between 6 and 8 one has the relation 

tan 8 = tan 8 . cos o 
(2.2.26) 

and from equation (2.2.11) 

tan 6 = cos o . tan 6' + sin o . tan e' (2.2.27) 

Since w is in the surface S2, this relation can also be interpreted as 
defining the angle 8 of the intersection of the S2 surface with a 
conical surface forming an angle o with the axial direction. 

Blockage coefficients, friction and body forces 
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The dimensionless streamtube thickness b, also called the tangential 
blockage factor, is related to the circumferential velocity variations 
of the flow by equation (2.2.10), with b - B/r. In order to distinguish 
between the two families of surfaces, S2 and S1, we will indicate the 
thickness of the S2 streamsheet by a subscript 2. Hence we have here b2 

- B2/r and equation (2.2.10) becomes 

1 db*  1 , f  ftl  
3wz  f   ,  3wr  9V 

BT dT - r ('tan 6 • 3o~ - tan e • W + ^ 

1     3b2     3b2 
— (w   + w  ) 
b2  r 3r    z 3z 

(2.2.28) 

With the knowledge of the normal vector to the streamsurface and the 
vector relation (2.2.9), one has here 

(2.2.29) 
B, -» -• u 2 3n 1 3n 
B, 36 r 36 

For an axisymmetric flow, the tangential blockage factor b2 will be 

constant. But inside blade rows, the blade-to-blade flow creates a 
tangential variation of the flow field and hence variations of b2.  As 

shown by Novak and Hearsey (1977), the streamwise variations of the 
tangential blockage factor can be quite strong in particular in the 
vicinity of the leading edge region of the blades. In absence of any 
other information, the blockage factor b2 may be approximated by the 

tangential spacing variation between two adjacent blades. A better 
approximation can be obtained from the knowledge of the flow in the 
9-direction, that is from the flow along the S1-blade-to-blade surfaces. 
In this case b2 can be represented by the distance between two adjacent 

streamlines. 

The body force fD, appearing in the streamsurface momentum equation, and D 

defined by equation (2.2.8) is given here by 

(2.2.30) -* f    . . in i£ . n  1  9p 
B p     36 p r 38 

This force, which results from the confinement of the flow description 
to a two-dimensional surface, is directed along the normal, and hence is 
orthogonal to the local velocity vector following equation (2.2.19), 
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?B . w - 0 (2.2.3D 

This relation actually allows the determination of two force components 
fBr and 

(2.2.18) 

fD  and fn  in function of the third one fDn. One has from equation 
br        DZ DO 

fBr/fB6 = ' tan e' " "r/n6 (2.2.32a) 

fBz/fB6 " " tan B' • Vn6 (2.2.32b) 

The direction of the friction force Ff is defined by equation (2.1.10 as 

being opposed to the relative velocity vector w. Hence, two components 
-» 

of F_ are determined by the flow angles in function of the third one, or 

alternatively in function of the magnitude of F , 

F  = -F  . —- fe   f  w 

W6 (2.2.3^3) 

F  = -F —- fr    f w 

Wr (2.2.3^b) 

Wz (2.2.3^0) F  = -F — fz    f w 

Through-Flow Equations in Cylindrical and Axisymmetric Coordinates 

Finally, the through-flow equations take the following form within the 
streamsurface approach in cylindrical coordinates when Crocco's form, 
equation (2.2.5) is selected for the momentum equation, see Problem 
2.2.1. 

^ (Pb,r) • fj: (Pb2rwr) • |j (pb2rwz) - 0 (2'2'35) 

3 w - w (|- w - I- w ) - !• 3 (n,) . T fe - fe • Ff • f„  (2'2'36) 
3t r   z 3r z  3z r   r 3r   9     3r  3r   fr   Br 

3        ,3     3   »  W6 3 ,  ,  _ 3s  31       „ (2.2.37) ^r w + w (r— w - r- w ) - — r— (rv.) - T r T- + F_ • f_ 3t z   r 3r z  3z r   r 3z   9     3z  3z   fz   Bz 
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i_w + 1 L. (rv ) . F  • f (2-2-38) 
at 8  r 3m v V  fe  Be 

3_ . + w 3s .  w F (2.2.39) 
at    m 3m    T f 

3_I+   3J. . I i. „ (2.2.40) 
3t     m 3m * p 3t P 

The operator w.V is defined here by 

+53     3      3 (2.2.H1) 
W.V = w  T— « W -r-  + w  r— 

m 3m   r 3r   z 3z 

where m indicates the distance along the meridional streamline, see 
figure 2.2.3. 

Another interesting coordinate system is provided by the axisymmetric 
(6,m,n) system . With the assumption that the coordinate n is a 
meridional streamline, that is obtained by the projection of the 
velocity on a meridional plane, figure 2.2.3., then w  » v » 0 

everywhere. This leads to the following system of streamsurface 
equations 

3_w . !i L (rv ) . T la . |l + F  + f (2.2.42) 
at m  r 3m v 6;    3m  3m   fm   Bm 

_ [!i L (PV ) + w !!«! • !«!] . T |i . li • g (2.2.^3) 
Lr 3n K    6;   m 3n   R J    3n  3n   Bn 

m 

I_w + jnL (rv j . F  + f (2.2.H4) 
at e  r 3m v V  fe  Be 

The projection of Ff along the direction n is zero since F is directed 

opposite to w, equation (2.1.i»).  The radius of curvature 1/R is 
m 

connected to the angle o by 

f£ " "1/Rm (2.2.145) dm     m 

The continuity equation becomes, 

3 ,   K  u N   3 , K U x   n (2.2.146) 
at (Pb*rn^ + 35 (P•mb2ha) " ° 

or, for a steady flow 
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prw b2h2 » constant along the meridional streamline m      (2.2.47) 

Equation (2.2.47) expresses the conservation of mass in a streamtube 
around the meridional streamline m, see figure 2.3.1. Indeed, h2 (h2 

being the metric coefficient associated to the n-coordinate) is 
proportional to the thickness of the streamtube centered on m. Calling 
this meridional streamtube thickness B,, measured perpendicularly to the 

m-line, one has from equation (2.2.47) 

pw b2rBt - constant (2.2.48) 

Note that B2*b2r is the thickness of the S2 streamsheet, while Bi can be 

considered as the thickness of the S1 streamsheet. 

As mentioned earlier, it is fully consistent with the already assumed 
approximations to consider that, for steady inlet flow conditions to the 
machine and steady rotations, the relative flow remains steady. In this 
case, the set of streamsurface-S2-equations simplify to the following 
form, in cylindrical coordinates 

IF <^w
r> * h (prb2Wz) • ° (2'2,49) 

_w (L w - L w ) . T k - ll • !i L (rv ) • F  • f       (2.2.50) 
z^3r z  3z V    3r  3r  r 3z Kr V   fr   Br 

w(^w _|_w).T|3.|l+!e|_ (2.2.51) 
r 9r z  3z r     3z  3z  r 3z   6    fz   Bz 

1 „ L (rv ) - F  • f (2'2-52) r m 3m k V   f6   B6 

u 3s  w (2.2.53) 
m 3m  T f 

w i-i-o (2-2-5,4) 
m 3m 

Note that one of the above equations is not independent from the others. 

The last equation (2.2.54) states that the total energy or rothalpy I is 
constant along a meridional projection of the streamline along the 
S2-surface. This implies, the following relations : 

I - H - uv - constant along m, for a rotating blade row, or 
(2.2.55) 

H - constant along the meridional streamline in a non-rotating system 
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Equation (2.2.52) defines the meridional variations of the angular 
momentum (rv.)  as determined by the component of the friction force and 

the body force.  In practical computations, equation (2.2.53) determines 
the magnitude of the friction force Ff, while fBe will be deduced from 

equation (2.2.52) when the necessary information is provided for the 
variations of rv. as will be discussed in the next section. The entropy 

variations are obtained from the total pressure loss coefficients as 
discussed next. 

The remaining equations (2.2.50) and (2.2.51)  form a system for the 
velocity components w ,w .  Since the entropy equation has been used 

explicitly, the two momentum equations are not independent and one of 
them can be applied, while the other is discarded. 

The radial component of the momentum equation (2.2.50) is known in the 
turbomachinery literature as the radial equilibrium equation. 

2.2.2.  Principles of Through-Flow Computations 

Three sets of external information have to be provided to the system of 
equations  (2.2.19) to (2.2.51), expressing the missing information with 

regard to viscous effects (F ) as well as to the properties of the flow 

in the omitted direction,  that is the 9 or tangential direction 
(b2,rve). 

i) The tangential blockage or streamsheet thickness b2 

This information has to be defined by the flow along the other 
family of surfaces, namely the S1 or blade-to-blade surfaces 
according to equation (2.2.28). In absence of this information, 
the following approximation is usually applied 

. m  geometrical width of channel 
*    inlet width of channel 

whereby b2 is made flow independent, 

implies 

For the S2-surface this 

1 --d 

s 
(2.2.56) 

where d is the blade thickness in the tangential direction and s 
the blade spacing or pitch, see figure 2.3.1. In duct regions, 
outside blade rows, b2 can be taken equal to 1. 

ii) The angular momentum rv e 

Since equations (2.2.50), or  (2.2.51), solve for the velocity 
components in the meridional plane w and w , the tangential 
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row.  From the knowledge of the loss coefficient w, one obtains the 

entropy variation 

3 " 3A -  Pd —-* - -ln(1 - u -r^-r) (2.2.66) 
P 
(is) 
o 

from which the friction force F_ can be defined. 

The determination of the stagnation pressure losses are strictly 
outside the present level of approximation and have to be provided 
by external sources such as empirical informations. Note however, 
that within the blade-to-blade flow computations, viscous 
calculations could be performed, for instance with boundary layer 
methods in order to estimate the losses occuring along the blade 
sections. These two-dimensional profile losses form only a part of 
the total loss and they would have to be supplemented by additional 
contributions from full three-dimensional effects such as, for 
instance, the secondary and tip leakage losses. 

Therefore, as with the flow angles, reference is made to empirical 
correlations relating loss coefficients to a limited number of 
geometrical and flow parameters considered to have a dominating 
influence. These loss correlations complete the missing 
information of the S2-surface flow as defined by the equations 
(2.2.19) to (2.2.51) above. A large body of literature is 
available in this field and a recent overview of the problem and 
limitations of loss and turning correlations can be found in Hirsch 
and Denton (1981). 

iv) The calculation of the density 

The density is 
and the loca 
(2.1.29), with 

The density is computed from the knowledge of the flow velocities 
and the local stagnation conditions, for instance from equation 

H* -C T' - I+Hi-h*£ 
(2-2'67) o   p o      2       2 

£_ . (1 . ^r)1/(Y"1) - (1 - J^)1^"1) (2.2.68) 
po        o o 

With the relation 

.  1/(Y-1)  -(s-s.)/r ,  . , . p m  /h_v A (2.2.69) 
PA " hA 

one can relate the local density to stagnation values at another 
point A on the same streamline. 
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h 1/(Y-1) -(3-3.)/r 
p   , h «. A 
—— • ( )      e 

"oA   V 
(2.2.70) 

r* + ii* - nz w* • u* - u2 1/(Y-1) -(3-s )/r 

« - -r*r—' oA 

2.2.3. Alternative forms of through-flow equations 

As mentioned earlier, one of the momentum equations is redundant and the 
choice between equations (2.2.50) and (2.2.51) depends on the general 
flow configuraiton. Equation (2.2.50), the radial component of the 
momentum equation, has a coefficient w in the left hand side and will 

not be suitable for a machine with a predominant radial flow, that is 
for radial or centrifugal machines. Similarly, the axial component of 
the momentum equation , equation (2.2.51), cannot be applied for axial 
machines where w might vanish in all or part of the flow domain. For 

mixed flow machines one would have to use one or the other equation 
according to the flow region. An elegant way to avoid this has been 
introduced by Bosman and Marsh (1971*) and consists in using the 

•* 

projection of the momentum equation on a direction N situated in the S2 
-• 

surface and perpendicular to the velocity vector w, see figure 2.2.1. 

•+ •• 
The N-direction is actually perpendicular to the body force f , which is 

-• B 

normal to S2, as well as to the friction force F , which is parallel to 

w. Hence, one has 

N . Ff - 0        and        N . f - 0 (2.2.71) 

Defining N by the vector product 

N = (fB x w) (2.2.72) 

the projection of the streamsurface momentum equations can be obtained 
from equation (2.2.5) for steady state flows, as 

+ •*       •* 

-N.(w x I)   - N.(Tvs - VI) (2.2.73) 

or 

. 
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(?,.?>.«• - T(li). - (fi.V)I - T(N || • N ||) - (Mr | • Nz |i)  
(2'2-7l,) 

With equations (2.2.32) and (2.2.33) defining the direction of the body 

force f , equation (2.2.7H) becomes 

"' [fB9(li Wr " h  V + F fBz IF (rV " r fBr fe <«V3 

" (fB6Wz " fBzV (T F " f?} + (fBrW9 " W)(T If " ^ 

or 

+ 2 /3     3   >  /     z  .. ,„ 3s  31. w2 (^- w - —- w ) = (w wn) (T r r-) 3z r  3r z     z  nQ 6    3r  3r 
0 

(2.2.75) 
n       r   -    +2  n r        n T ,     r  . ,„ 3s  31.  w r r 3  ,   N   z 3  ,  », 

r  n. e    dz  dz   r nQ dz   8   n. 3r   6 

The coefficient in the left hand side of the above equation is now w2, 
independent of the flow direction. This equation has another advantage 
in that the force terms have disappeared from the right hand side, 
although they are not neglected. Hence, equation (2.2.75) does not 
require the explicit calculation of the force components, but does 
however require the explicit knowledge of the normal to the 
streamsurface, that is the angles e' and 6'. Introducing these angles 
explicitly, equation (2.2.75) becomes 

W (3i Wr " 3r" V " (wz + Vtan B )(T 37 ~ 5F> 
(2.2.76) 

(wp * we.tan «.)(T §£-§!>•*- [tan B> f^) - tan c-^)] 

In a duct region, where no blades are present there is no body force 
-* 

because of the axisymmetric assumption and the direction N cannot be 
defined. In this case, because of the axisymmetry, one can select the 
direction perpendicular to the meridional streamline m in the (r-z) 
space as the projection direction, see figure 2.2.2. With 

" "  \  x » " wz 
Tr " wr Tz (2'2'77) 

one obtains instead of equation (2.2.7^), 
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2/3     3   »    ,_, 3s  31 ^    ,_ 3s  31 s 
m dr z  dz r    r  dz  dz    z  dr  dr 

+ =* C**n a7 trv.) - w, §- (pv )] r   r dz   9    z dr   9 

(2.2.78) 

Note that, in a duct region one can consider the flow from the absolute 
•+ + •* 

reference system and set I=H, w-v since u-0. Also the overbars on the 
derivatives can be suppressed because the flow is considered as 
axisymmetric. 

2.2.H. Properties of the through-flow equations 

It is important to analyze the mathematical properties of the system 
formed by the continuity equation and the momentum equation, for 
instance the radial component for an axial machine, with regard to the 
characteristics and their elliptic or hyperbolic properties. This is 
best obtained after setting the equations into the quasi-linear form. 
The radial momentum equation is best written, for this analysis, in the 
form of equation (2.2.4), after introduction of the continuity equation 
(2.2.3), for steady flows 

3        3      13 
w T— w • w x-w +-^-p»F„ • f_ + o)2r • 2u.wQ + w2/r 
r 3r r   z 3z r  p 3r K   fr   Br 6   6 

m  F  + f  + v2/r fr   Br  V 

(2.2.79) 

where the right hand side is unimportant for the properties of the 
system. The continuity equation is transformed to the quasi-linear 
form, developing equation (2.2.49) 

3        3        3        3       **** (2.2.80) 
P T— W  + p ;r- W  +W  r— p + W  r— p = -p —  

3r r    3z z   r 3r     z 3z       B, 

The derivatives of density and pressure can be expressed in function of 
the velocity derivatives. One has, from the definition, equation 
(2.2.68), for any variation 6 

<5p " " JT (wr6wp + wz6wz + w06we) (2.2.81) 

and 

6p - (|£) 6p - a2 6p (2.2.82) 
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where a2 is the square of the speed of sound. 

The dependent variables are w and w and as discussed above, w  is 

supposed to be known from the blade-to-blade information. 

If w„ is defined by the flow angle B, equation (2.2.21), then w„ will be 
6 o 

function of w and contribute to the definition of the properties of the 
2 

equation. In the other case, if w0 is given as a function of 

coordinates, as in the design option, w will be considered independent 

of the velocity component w .  We will combine these two cases by 

writing formally 

6w„ = v.tan B.6w 
u z (2.2.83) 

where v=1 when the flow angle 6 is given and v=0 when w  is imposed. 
o 

Hence, equation (2.2.81) can be written as 

6p T [w iw + w (1 + v tan2B)6w ] 
a   r r   z z 

(2.2.84) 

The continuity and radial momentum equations can be written under the 

system form as follows, writing K • 1 + v tan2B 

(1-M2)   |-w     -  HMKr-w    -MM     r-w    +   (1~KM2)   ~- w 
z     3z     z 

w.VBj 

B* 
(2.2.85) 

3 3 6 
•WKT-W    +W    r-w    =F.     •  f_     +  — 

z    3r    z        z 3z    r        fr        Br        r 
(2.2.86) 

M and M are the Mach numbers corresponding to w and w , that is r     z K    °    r     z* 

M - w /a r   r and M = w /a z   z (2.2.87) 

In matrix form, the above system can be written as 

A * 3r 
+ B • T- 3z q2 

(2.2.88) 

or explicitly 
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(1 - Ma) - KM M r     r z 

- w K z 

-M M 1   -  KM2 
JP w r z z *• 

3 r rf + 
3r w 97, z w z 0 

Qi 

q2 
2.2.89) 

where the right hand sides represent the terms independent of the 
velocity derivatives. The system (2.2.89) is elliptic or hyperbolic if 
the characteristics are imaginary or real. The characteristic 
directions A are determined by the solutions of the determinant 
|A+XB|-0. That is 

1 M2 - AM M r    r z 

Aw 

-M M K + r z A(1 - KM2) 

-w 
(2.2.90) 

leading to the two solutions 

[M M K ± r z /K(M2 + KM2 - 1)]/(1 KM2) (2.2.91) 

One obtains the following important properties,  valid  for  all 
quasi-three dimensional descriptions along the S2 type of surfaces : 

- The system of equations (2.2.19) to (2.2.51) is elliptic if the expression 
under the square root is negative, that is for 

M2 • vM2 < 1 m    6 (2.2.92) 

Hence, the through-flow model is elliptic for subsonic meridional Mach 
numbers when w.  is imposed (v=0), while the system is elliptic for 

subsonic relative Mach numbers M2«M2 + M? <1, when the flow angle 8  is • mo 
given  (v-1). 
into account. 

Any solution method will have to take these properties 

The first case, namely the design option, whereby w is considered as a 

known function,  is of particular interest and deserves some comments. 
The condition (2.2.92) indicates that the through-flow problem can be 
treated in an elliptic way for subsonic meridional Mach numbers, 
although the relative Mach number can be supersonic.  Hence,  for given 
w  distributions,  one can handle relative supersonic flows inside the o 
blade rows in the 3ame way as the subsonic relative flows and compute 
the meridional velocity components within the blade rows by implementing 
in the appropriate way, the information about w„ to be transferred from 

the  blade-to-blade  surfaces, However,  if this information is 

transmitted under the form of the flow angles B or 6, no calculation 
method of "elliptic" type (for instance the methods described in section 
2.1.) will be able to handle correctly supersonic relative flows, at 
calculation points situated inside the blade rows, unless the 
computational procedure is adapted for supersonic flows, by allowing a 
correct treatment of hyperbolic regions. For instance, by applying 
techniques similar to those developed for the computation of transonic 

72 - 



potential flows, or time dependent formulations of the type applied to 
the resolution of the system of Euler equations. 

Note that outside blade rows, that is in the duct regions, the above 
conditions  automatically  apply since v. is always given, as a 

consequence of equation (2.2.58) expressing the constancy of angular 
momentum. Hence in duct regions the problem will always be elliptic for 
subsonic meridional Mach numbers. 

This situation is closely connected to the analysis of the time-like 
direction in three dimensional supersonic flows. An arbitrary direction 
is to be considered as time-like if the projection of the velocity along 
this direction is supersonic. When this projection is subsonic, the 
problem is elliptic with respect to the corresponding direction, since 
an upstream propagation of information in this direction is possible . 
The same properties appear here, since upstream propagation of 
information in the meridional direction is possible, from outlet to 
inlet of a blade row for instance, when the meridional Mach number is 
subsonic even for relative supersonic flows. This apparently 
contradictory situation can be understood, even in the presence of 
choked blade-to-blade passages, because of the way the information is 
transmitted from the blade-to-blade flow to the S2-surface. Indeed, the 
supersonic flow occurs in the blade-to-blade-S1-surface, which is not 
resolved by equations (2.2.49) to (2.2.54) and, as discussed above, the 
information on the properties of this flow have to be transferred 
through the entropy (or stagnation pressure) and wQ variations.  If the 

flow passage is choked, implying that no upstream influence can be 
transmitted in the relative flow direction, and with the mass flow 
defined by the inlet conditions independently of the outlet flow 
conditions, there is still an upstream propagation of pressure waves in 
the meridional direction, assuming subsonic meridional flow. This is 
illustrated on figures 2.2.4 and 2.2.5 in the case of choked compressor 
and turbine passages, respectively. In these cases, the entropy 
variation s=s(r,z) or s=s(r,m) will have to take into account the 
entropy discontinuity over the normal shock in figure 2.2.4 and the 
transmitted tangential flow components will have to be consistent with 
the choked mass flow. Similarly, the value of w transmitted at blade 

y 

outlet of the choked turbine of figure 2.2.5, will have to be defined by 
the local value of the mass flow in such a way as to respect mass 
conservation between the throat area and the outlet. This has of course 
implications on the way the computation of the throUgh-flow is performed 
since, for a fully choked passage, the mass flow cannot be imposed but 
will result from the calculations for an imposed pressure ratio. 

A similar situation occurs for the supersonic compressor inlet flow 
where the phenomena of unique incidence, at the leading edge of the 
blades, for supersonic incident velocities, has to be taken into account 
and the corresponding tangential velocity at inlet has to be transferred 
to the through-flow computation. Similarly, if the flow is choked the 
outlet tangential velocity should be consistent with the critical mass 
flow. 

Therefore, when information on w. is transmitted, this decouples the 

meridional velocity field (w ,w ) from the tangential velocity field 
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and, provided the w. distribution is consistent with the physical o 
phenomena in the blade-to-blade surfaces, one is left with an elliptic 
or hyperbolic problem in the (r,z) space according to the meridional 
Mach number.  However, when the flow angle is transmitted this couples 
the tangential flow field to the meridional one through equation 
(2.2.21) or (2.2.25) and the full three-dimensional conditions for 
ellipticity are maintained, namely subsonic relative velocities. 

2.2.5.  Flow Equations along Blade-to-Blade S1 Surfaces 

The equations for the blade-to-blade surfaces of the SI type in figure 
1.1.2, are obtained by following the same procedure as in the previous 
section starting from equations (2.2.1) to (2.2.11). 

If the SI surfaces are defined by r=r(e,z) families, the continuity 
equation becomes, indicating by bi the thickness of the S1 streamsheet, 

see also equation (E.1.1.16), 

ft (BlP) * 1 |y (PB,we) • 1 §j (pBlwzr) - 0 (2.2.93) 

The streamtube thickness B, is defined by 

1  dB,  1  3B,  wQ 3B,     8B, 

§7 dT~ - §7 at" ' r~ W + Wz 3z~ 
,3       3       3 , ,   v(2.2.9^a) 
(T-W + n r-w + n. r-(wQ/r) 3r r   z 3r z   6 3r 9 

or 

VB, 

"BT 

•* 

3n 
3r 

(2.2.94b) 

with 

n z 
3 - ( —) KdzJ 

ne • - (—) 

n r = 1 

(2.2.95) 

as the components of the normal vector to the surface r=r(8,z). This 
form of the continuity equation is not suitable for radial blade rows, 
where the blade-to-blade sections are essentially in the (6-r) planes 
(when the angle o comes close to 90 degrees) and the S1 surfaces would 
have to be defined by z-z(6,r). 
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Therefore a more general form valid for any blade geometry is obtained 
by defining surfaces in the (m,6) coordinate system where ra is the 
meridional projection of the streamlines, see figure 2.2.3. 

Hence, in the axisymmetric orthogonal coordinate system (9,m,n) shown on 
figure 2.2.3, the S1 surfaces will be defined by surfaces n-n(8,m). 

The continuity equation takes on the general form given by equation 
(2.2.3), leading to 

3f^   ! *  f  n   ^   1^fD   x   n (2.2.96) 
St (pBl) + ?  ai (prBlWm) + ? ae (pB'V = ° 

where Bi-bjhs, h3 being the metric coefficient associated to the 

coordinate n, and with the definition of the bi-coefficient, following 

equation (2.2.10), 

1  ,9bl  W9 3b> t        
3b>   .3    ^ n    3 ,  . .     3   .   (2.2.97) 

— {-rr-  • — r^- • w ^—) = (r- w + nQ x- (wQ/r) + n -r- w ) 
b,  3t   r 36    m 3m     3n n   6 3n  6     m 3n m 

with 

n6 " ' 3^ (e»m) 

The streamsurface derivatives are defined by equation (2.2.1) 

38 == 36 " n6 3n 

3_ = 3_ _   3_ 
3m  3m   m 3n 

(2.2.98) 

(2.2.99) 

Some confusion might be possible here between the normal n and the n 
coordinate of the axisymmetric coordinate system n,m,8. However, it 
should be clear from the text that equation (2.2.98) for instance, 

relates the 9 component of the vector n to the 6 derivative of the 

surface defined by relation n»n(8,m) in the (n,m,6) coordinate system. 

For a permanent relative flow, the steady state continuity equation 
becomes 

5  / n    \   1 5  / n    x (2.2.100) 
3m" (pB'rWm) + ? 36 (pB»rV = ° 
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Note that B, is measured here in a direction perpendicular to m. 

In practical calculations the function Bl=Bi(9,m) has to be determined 

from the hub-shroud S2-flow according to equations (2.2.96). An 
interesting and widely used approximation is obtained from equation 
(2.2.18) which states the mass conservation along a streamsheet centered 
on m. 

Hence one can define the function Bi=Bi(m) as follows 

B,(m)   (prw b2)0 
s-7—r -  ^c— (2.2.101) B,(m0)   prw b2 m 

where (pw ) is obtained from the hub-shroud S2 streamsurface solutions m 
to equations (2.2.19) to (2.2.51) and where the subscript 0 indicates a 
reference state, generally the inlet of the considered blade row.  The 
inverse of equation (2.2.101), namely the quantity B.(m0)/B.(m) is often 

called the Axial Velocity-Density ratio or AVDR, in the literature. 

The momentum equation (2.2.5) becomes in the (8,mtn) coordinate system, 
with w -0 and F„ »0 for a streamsurface n=n(m,6) n      in 

L      j!>fL       L   }   TL«,   1LT + F   • f        (2.2.102) 
3t W9  r ^3m rv6 " 38 V  r 36    r 39     f9   B9 

1_      !!i rL      i_    ^T^-     i_T + p+f (2.2.103) 
3t wm + r ^36 Wm " 3m rV   3m S " 3m     fm   Bm 

= fn„ (2.2.101) R     Bn m 

while the energy and entropy equations can be written as 

3s+ 3s+^93s      w (2.2.106) 
3t      Wm 3m      r    39 = f    f 

where R is the radius of curvature of the meridional streamline.  The 
m 

•¥ 

body force f„ is defined here by 

•*• •*       3D 
pfB - -n . ^ (2.2.107) 
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In particular, if the S1-streamsurface is assumed to be close to an 
axisymmetric streamsurface, then S1 is a surface n-constant and the body 

-» 
force fD is purely directed along the n-axis, which is the normal to the 

o 
m-e axisymmetric surface. This follows from the same considerations as 
those which lead to equation (2.2.30).  Under these conditions, one 
would have 

fB6=fBm=° (2'2-108) 

Equation (2.2.1CO defines the n-component of the body force as balanced 
by the centrifugal force in this direction and can be considered to be 
responsible for the curvature of the meridional streamline. The radius 
of curvature R will be positive if the pressure increases with n, that 

is from hub to shroud. 

In analogy with the discussion of the S2-streamsurface computation, the 
blade-to-blade SI computations require the knowledge of the streamsheet 

thickness Blt  and of the forces F and f . 

The thickness Bi, defined by equation (2.2.97) can be approximated by 

equation (2.2.101), while the force fQ requires the knowledge of the D 

pressure gradients in the n direction at every point. Both quantities 
are to be obtained from the S2-streamsurface solutions. As discussed 
previously, the friction force on the other hand has to be provided by 
empirical data or can be calculated at least partly in the 
blade-to-blade surfaces (for instance by a boundary layer approximation) 
and averaged out over the blade-to-blade spacing for transmission to the 
S2-hub-to-shroud surfaces. 

The Axisymmetric Blade-to-Blade Surface Approximation 

A considerable simplification of the whole quasi-three dimensional 
interaction occurs when the blade-to-blade S1 streamsurfaces can be 
considered as surfaces of revolution. This assumption does not imply, 
however, that the flow is to be considered as axisymmetric. The 
blade-to-blade equations can be simplified in the following way, as a 
consequence of the axisymmetry and of additional assumptions with regard 
to the tangential uniformity of total energy I and entropy s. 

i) the surface n«n(6,m) is the surface of revolution, n-constant, 
generated by the rotation of the meridional streamline m, see 
figure 2.2.3-  The blade force reduces to a force in the n 

direction according to equation (2.2.108) and the normal n to the 

surface is in the direction of the n-axis. 

Hence 

n = n - 0 (2.2.109) 
m   o 

ii) In a steady flow the total energy I is constant along a streamline, 
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equation (2.2.105) and hence, the total energy will remain constant 
in the whole S1 flow field if it is assumed to be uniform in the 

,6-tangentlal direction in the inlet section of the blade-to-blade 
calculation domain. Thus, if 

31  „      tu . , „ - (2.2.110) ^r- - 0    in the inlet surface 
do 

one has 

I » constant in the whole S1 surface (2.2.111) 

iii) In accordance with the distributed loss model, the friction force 
and hence the entropy, are considered as an average representation 
of the losses generated by the shear stresses. Therefore it is 
consistent to assume that the entropy and Ff do not vary in the 

tangential direction 6. 

This corresponds to the assumption that the entropy is a unique 
function of the meridional distance m, that is 

s = s(m)     or     || - 0 (2.2.112) 

With these simplifications, the blade-to-blade equations for an 
axisymmetric streamsurface and tangentially uniform energy and entropy 
distributions reduce to the following equations, where the overbars have 
been removed form the derivatives as a consequence of (2.2.109) 

ft   (pB')   •fe<PB»•B)   + fe   (PB'V   •  ° (2.2.113) 

3      Wm ,3  ,   .   9   ,   _      W6 P (2.2.114) 
at we + r  (3m" (rV " 39 V ' Ff9 " " w" Ff 

fQ (2.2.115) R     Bn 
m 

i*»„s-js7 5t<»B.' (2-2-"6> 

If * -• H - ? Fr <"•"" 

A further simplification is introduced for steady flows, leading to the 
system 
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Is (eB'rV + le(pB»we) ' ° (2.2.118) 

r (3m" (rV6) - 36 Wm) " Ff6 (2.2.119) 

R     Bn 
m 

(2.2.120) 

3m (2.2.121) 

3s  w 
Wm 3m = f f 

(2.2.122) 

In particular for steady flows,  equation  (2.2.119)  shows  that  the 
n-component of the absolute vorticity c is given by 

w F 
D  /       8  f C  - -r F,./w = r   

n      f6 m    w  w 
m 

r tan B 
(2.2.123) 

and hence, if the effects of the friction force are neglected in the 
blade-to-blade surface, the absolute flow will be irrotatlonal. In this 
case the absolute velocity will depend on a potential function $, which 
satisfies equation (2.2.118), in the steady state case. 

V<j> 
(2.2.124) 

Is "*'•'• 3£, 
3m' 

3_ 
36 

B, 

(Pr~ 
3$,   3_ 
36; " 38 

(pB,wr) 
(2.2.125) 

However, it is to be noticed that this assumption is not consistent with 
the S2-hub-shroud through-flow since, neglecting the friction forces 
consists in assuming constant stagnation pressure and hence constant 
entropy in the blade-to-blade surface, while this is not the case at the 
corresponding points of the S2-surface. The introduction of the losses 
leads to a stagnation pressure variation along the meridional m-line in 
the through-flow calculation, while the above assumptions neglects the 
same variation in the blade-to-blade surface. 

In addition, the application of the isentropic potential equation 
(2.2.125) to the internal blade-to-blade flows is faced with the 
non-uniqueness problems associated with transonic potential flows. 
Therefore, equation (2.2.125) can be considered as a good approximation 
for subsonic and mildly supersonic flows, but is not recommended for 
choked transonic blade-to-blade flows. In this latter case, it is 
advised to apply the equations (2.2.113) and (2.2.111) supplied by 
equation (2.2.116) and (2.2.117). 
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Another option consists in introducing a streamfunction 4»(m,9), defined 
by 

pBlrwm - ff (2.2.126) 

PB,WQ - - JjJ - PB,vQ - pB,o)r (2.2.127) 

the vorticity c of the absolute flow can be written as 

The application of the streamfunction to the 2D blade-to-blade flow, 
allows to take into account, the effect of the friction force on the 
inviscid blade-to-blade flow. However the non-unique relation between 
density and streamfunction makes the application of this formulation 
difficult for transonic flows. 

2.2.6. The Streamsurface Quasi-Three-Dimensional Interaction 

The complete Quasi-three dimensional interaction can now be described as 
follows, for an analysis problem whereby the geometry of the machines is 
given. Detailed considerations with regard to the design options can be 
found in Wu (1952). 

i) Define a series of S2-streamsurfaces as a reasonable approximation 
to the passage flow configurations. A valid starting option is to 
consider only one S2-surface assuming an initial axisymmetric 
approximation. 

ii) For each streamsurface S2, initial approximations have to be 
selected for the tangential blockage or sheet thickness coefficient 
B2. The through-flow is computed following sections 2.2.1 to 

2.2.3- 

iii) From the computed S2-flows, the following information is extracted 
in order to define the various S1 blade-to-blade flows : 

- the  geometrical  coordinates  n-n(6,m)  of  the  selected 
blade-to-blade surfaces, 

- the streamsheet thickness Bi«Bi(6,m) according to equation 

(2.2.101) 

- the body force 

- the boundary conditions upstream and downstream of each blade to 
blade section. 

iv) The various S1 blade-to-blade flows are computed following section 
2.2.5. 
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v) From the computed blade-to-blade flows,  improved S2-streamsurface 
coordinates are defined as well as blockage coefficients B2-B2(r,z) 

and body force. 

vi) The whole process is repeated until a satisfactory convergence is 
obtained. 

This complete iterative procedure has been applied by Krimerman and 
Adler (1978) and is schematically illustrated in figure 2.2.6 

The iterative process can be quite complex and lengthy, especially in 
configurations where the blade-to-blade surfaces become highly twisted, 
but it allows to recover the full three-dimensional flow. 

Simplified Quasi-Three-Dlmensional Interaction - Mean Streamsheet 

An important simplification of the complete process consists in assuming 
that the S1-blade-to-blade surfaces are surfaces of revolution generated 
by the rotation of the meridional projection of the streamlines. This 
will be valid when the blade-to-blade surface twist, induced by 
secondary flows remains small. In addition, it is considered that the 
through-flow can be represented by a single, mean streamsurface S2, 
which is considered to be representative of all of the S2 surfaces. 
Hence the quasi-three dimensional flow model will consist of one 
S2-through-flow surface and several, axisymmetric, blade-to-blade 
surfaces. 

The main problem in this simplified approach is to define the mean 
streamsheet. Intuitively it is to be considered as a kind of average or 
representative surface of all the S2 surfaces. However, the present 
approach does not give any indication as how to select this surface. 

Various choices have been attempted in order to generate the mean S2 
surface: the mean camber line, Senoo and Nakase (1972); the 
streamlines of the blade-to-blade flows separating equally the mass flow 
between pressure side and friction side, Novak and Hearsey (1977); the 
mass averaged blade-to-blade streamlines, these "streamlines" being 
different from any actual streamline, Bosman and El-Shaarawi (1977). 

No indications are available as to which choice is to be recommended. 
As discussed by Novak and Hearsey (1977), the local flow values can be 
quite sensitive to the choice of the distributions of the B' and e' 
angles defining the mean streamsurface. In particular, figure 2.2.7 
shows a comparison of the meridional variation of the streamsurface 
angle 6' in function of meridional distance for the mean camber line and 
the equally dividing streamline (<j»-0.5 on figure 2.2.8), for a turbine 
nozzle such as illustrated in figure 2.2.8,. 

Clearly, the strong gradients of B' along the camber line are difficult 
to accept as representative of the mean hub-shroud flow. In addition, 
the angle e' (lean angle) can have a considerable influence on the 
resulting flow distributions. This is illustrated in figure 2.2.9 from 
Novak and Hearsey (1977), showing a comparison of two calculations of 
the through-flow along an S2-surface.  A first calculation (Run 10) 
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corresponds to E'«0, while the second case (Run 20) had a mean 
streamsheet lean angle e' of 10 degrees at the inner radius and varying 
such that the surface was straight. The computed configuration is a 
turbine nozzle with radius ratio of 0.88, outlet angle of 72 degrees and 
an outlet Mach number close to 0.6. In the second run, the blades were 
given the same lean as the streamsurface, with the pressure surface 
facing towards the inner radius. As can be seen from figure 2.2.9, the 
radial static pressure gradient is completely altered at the inner 
section AA, although minor differences occur at the trail ng edge. 

The third parameter necessary to define the mean streamsurface 
through-flow is the thickness parameter B2. As already observed by Wu 

(1952) and illustrated by Novak and Hearsey (1977), the application of 
equation (2.2.28) leads to variations of B2 with very strong gradients 

as shown on figure 2.2.9 for the same computation as figures 2.2.7 and 
2.2.8. In addition, for subsonic flows, the influence of the blades 
extend upstream and hence modifies the value of B2 from the value of 

unity valid in bladeless regions. More generally, Horlock and Marsh 
(1971) have shown that no choice of the mean streamsurface can be made 
such that the calculated flow along this mean surface would represent 
exactly the actual average flow over the passage width, see also section 
2.3.2. 

However, the overall change, from leading edge to trailing edge can be 
correctly modeled if the streamsheet angles are adapted to the flow 
angles at these locations. But there is no guaranty that the local 
values of the flow variables, calculated within the blade passage, are 
representative of the actual averaged flow. 

Therefore, although the simplification provided by the mean 
streamsurface model is an important one, its precise choice can lead to 
uncertainties as to the representativity of the calculated local flow 
behavior inside the blade rows with regard to the real passage averaged 
flow. 

An alternative approach, which avoids the arbitrariness of the choice of 
the mean S2 surface, can be defined by the averaging procedure to be 
discussed next. As will be seen, this approach which solves the exact 
through-flow equations for the passage averaged flow in a meridional 
plane does not have the same uncertainties on the angular parameters, 
8',  e'.  The third variable B2 on the other hand, will be seen to be 

only function of geometry, see equation (2.3.5). However, the 
through-flow equations contain additional terms depending on the 
blade-to-blade flow distributions, which have to be estimated. Since 
the estimation of these terms can be derived, if necessary from the 
blade-to-blade solutions, one has a general, rigorous approach for the 
simplified quasi-three-dimensional flow model consisting of the passage 
averaged flow and axisymmetric blade-to-blade surfaces. The averaging 
procedure on the other hand cannot be applied to the estimation of the 
full three-dimensional flow, as can be done with the streamsurface 
approach. 
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2.3-  THE PASSAGE-AVERAGED QUASI-THREE DIMENSIONAL APPROXIMATION 

The averaging procedure for obtaining a quasi-three dimensional 
approximation to the turbomachinery flow consists in defining a 
two-dimensional flow in the meridional cross-section of the machine, 
representative of an average flow over the passage width of the blade 
row. 

Referring to figure 2.3.1. the averaged flow at a given point P of the 
meridional cross-section is obtained by performing an integration of the 
flow properties from the pressure surface to the suction surface of the 
next blade along the axisymmetric cross section generated by the 
rotation of the meridional streamline m.  In order to apply the general 
theory of section 1.2, a cylindrical coordinate system (r,8,z) is chosen 
and the integration direction £'«8.  The limits of  integration are 
defined by the blade surfaces and the width b of the integration region 
is given by b-e -9 where 6 and 6 are the angular position of tne ps       ps or 
pressure and suction surfaces of two consecutive blades.  If N is the 
number of blades, d the tangential thickness of an individual blade, and 
s the pitch or blade spacing at radius r, one has 

2n  d  2ir .   d.  2TT .  _  . b=13 Z.  = iT~ ('   Z>   " TT  b2 (2.3.1) N   r  N      s — N 

defining a streamtube thickness parameter b2, function of the geometry, 

b2 = 1 - d/s (2.3.2) 

The averaged equations have the following form, obtained from section 
1.2 (Table 3.1) by removing the shear stress and heat conduction terms. 

Continuity 

§£ Ub2) • $ (b2pw) = 0 (2'3>3) 

Momentum 

|- (pwb2) + v" (pw(x)w • p)b2 - -2p(ui x w)b2 + pw2rb2 • pF b2 + pfb 

Energy 

Jw  (2.3.*0 
2 
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|r (pE*b2) • v" (pwl ba) = 0 (2.3.5) 
at 

A body force f appears in the momentum equation as a result of the 

averaging process as seen in section 1.2.  This additional force f is 
defined by equation (1.2.37) and represents here the resultant of the 
pressure forces on the blade sections 

pf s [pn] V^ Pgn  ) 
1 

2irb: (2.3.6) 

••(D)    + (S) where n   and n    are the normals to the pressure and suction 

surfaces, respectively. 

The energy equation is written in the relative system with 

w*  u2 
h   e  2   2 

(2.3.7) 

The above equations are fully rigorous. 

Various averaged quantities can be defined and the most frequently 
occuring choices are the geometrical, density weighted or mass flux 
weighted averages. A consistent set of equations can be obtainedfor the 
density weighted average which has the property ofsatisfying exactly 
mass conservation, Hirsch and Warzee (1979). 

The density weighted average of a quantity A is defined by 

pA = - pAde = p (A - A") (2.3.8a) 

with 

pde (2.3.8b) 

A - A + A" (2.3.9a) 

and 

pA" (2.3.9b) 
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where A" are the deviations of the quantity A from the axisymmetric 

value A. 

Applying this definition with the general procedure of section 1.2, 
leads to the following averaged equations for the through-flow in a 
meridional cross section of the machine. 

2.3.1.  Passage Averaged Continuity Equation 

The averaged continuity equation (2.3-3)»  in the relative system, 
becomes 

ft Gb2r)   * |p (pb2rWr) • |^ (pb2rWz) = 0 (2.3.10) 

where W and W are the density weighted averaged relative velocity 

components. 

p*- 1 

6 
3 

pwde (2.3.11) 

This is an exact equation to be compared with equation (2.2.35) where b2 

is given by equation (2.2.28). Formally, both equations are identical, 
but in the streamsurface approach b2 is flow dependent and is only 

approximately equal to the value given by equation (2.3.2), see equation 
(2.2.56). On the other hand, equation (2.2.35) is the mass conservation 
law for the local velocities along an S2 streamsurface which has to be 
defined, while equation (2.3.10) is the mass conservation law for the 
averaged meridional flow considered in a true meridional cross section 
of the machine. 

For an axisymmetric flow, however, both approaches lead to exactly the 
same equations. 

2.3.2.  Passage Averaged Momentum Equation 

Applying the results summarized in equation (1.2.39) with the body force 

f defined by equation (2.3-6), the momentum equations in the relative 
system become 

r- |r (pWb2) + I- ^[pW©Wb2] - ^- $(pb2) - 2p(u x W) • pu)*r 

    (2.3.12) 
t -t       1 + pF  • pf - i- ^(pw"@w"b2) 
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where V is the gradient operating on the r and z coordinate space. That 
is, the explicit components of the gradient operator are obtained from 
the three-dimensional projections, where all derivatives with respect to 
6 are put to zero. 

The normals n to the blade surfaces, figure 2.3.2, appearing in the body 
•+ 

force term f, are defined by the angles 01 and e' s in equations 
(2.2.16) and (2.2.17) and are given respectively, for the blade pressure 
and suction surfaces, by 

- „(P> . !!R . 1 tan e, (2.3.13a) 
r    9r   r    p 

- „(P> - !!E . 1 tan ,. (2.3.13b) 
z    3z   r    p 

nQP) - 1 (2.3.13c) 

and similar equations for the suction surface, defining the angles 6', 
3 

es 

- „(» . P. ,  1 tan E. (2.3.Ua) 
r    3r   r    s 

.„<•). !!•. i un B. (2.3.ub) 
z    3r   r     s 

n^S) - 1 (2.3.11c) 

Hence, the components of the body force f are 

K '  bis" (Pp tan ep " ps tan es) (2.3.15a) 

for the radial component and for the axial component 

~pTz '  bTI (pp tan Bp " ps tan 3s) (2.3.15b) 

while the tangential component f is 

"pfe " 5.7 (PP" Ps> (2.3.150) 

- 86 



This last relation shows that the body force originates from the 
presence of the blades in the flow field as solid surfaces able to 
sustain pressure forces.  Actually f„ is nothing else than  the 

tangential projection of the local lift force on the blade. Hence, 

outside the blade row f - 0 and tne flow is considered as axisymmetric. 

It is customary to separate in the body force the effect of the blade 
camber from the blade thickness. If 8. is the angular coordinate of the 

mean camber line, one has 

irh 

(2.3.16) 
irb2 

9=6+ -77- p   1   N 

and 

(2.3.17) ¥b»       2 , 
6     =•   6     • 

S         1 N            N 

Introducing these relations in the definition of the blade force, 
equation (2.3.6), leads to 

b2s  p   s 2     b2 — 

--»(1) 
The first term pf   corresponds to the lift force generated by the mean 
camber line and is orthogonal to the mean camber surface. The second 

--•(b) 
term pf   is a correction depending on the radial and axial variations 

of the blale thickness blockage factor b2. Explicitly, one has 

Jfr " bis" (pp " Pa
) tan ei + JVbT ST (2'3'19a) 

-1 PD + PS 3bi 

^fz " b^ (pP " 
ps) tan Bi + ^TBT W (2'3'19b) 

The last term of equation (2.3.12), has the same structure as the 
Reynolds stres' terms in turbulent averaged Navier-Stokes equations and 
describes the influences of the full three-dimensional flow on its 
averaged components. We will define a secondary stress tensor by 

"(s)    -•„ ,-v +H (2.3-20) T     - "PW" 0W" 
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since the velocity riuctuations w" are generated by the deviations from 
axisymmetry, in particular the secondary flow contributions, or the 
blade-to-blade flow variations. We will designate the gradients of the 
secondary stresses as the interaction terms, since their influence 
arises essentially from the interaction betwen the averaged flow and the 
secondary flows. These terms can be considered as the sole 
contributions from the three-dimensional flow distribution to the 
averaged momentum equation. 

An alternative form to equation (2.3.12) is obtained by taking into 
account the continuity equation (2.3.9), leading to 

-  3 -•  -, •* 2. •* 
p ~ W • p(W.V)W 

(2.3.21) 

•vp - 2p(w x w) + pVr + pF + p? - — v"(pw" ©w"b2) 

where the body force fD is defined by 
D 

t-,  ^       p  + p   Vb, 

" pf  "   —2— ' ST" 

(2.3.22) 

where the pressure fluctuations have been introduced in the second term. 

The projections of the momentum equation (2.3-21) can be obtained from 
the general transformation laws to cylindrical coordinates, as follows : 

Radial momentum equation 

3Wp    3_       9_ V 
3t    r 3r r   z 3z r r 

- - 1 fj: p • u>*r • 2u>WQ * F  • f  + J- CV(T(S)b2)]r 
P P2b 

(2.3.23) 

where the secondary stresses are represented by the following three 
contributions 

-C^(*(S)b2)]p - I  |j; (b2rp1^w;) • J |j (b,rp^J5|) - ~ p-w|^»   (2.3.24) 
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Observe that the non-derivative velocity terms of equation (2.3-23) can 
be grouped as 

—— .  . —_ + u
Jr + 2uW 

r r r 0 

Similarly the axial component of the momentum equation becomes 

ft «, * "r IF », '  ». ll \  - - I i  * ffz * fBz * =T C»<t<S)b,)]2 (2.3.26) 
P Pb2 

where the last term represents 

-[V(-(S)b,)]z - 1 1, (b2r^») • 1 |j (b2rp^) 
(2'3'27) 

Tangential component 

It we + wr b we + \ h we * r WrWe 

" "2"Wr * ~Ffa + fB6 + r2- Cv(T(S)b2)]e 
pb2 

(2.3.28) 

where 

-L^(T(S)b2)je - J |p (b2rpw;w») • 1 |^ (b2rpw»w») + J pw»w»b2   (2.3.29) 

Here also the non-derivative velocity terms can be written as 

J Wr^We + 2ur) = J Wr(V0 + «r) (2.3.30) 

A detailed investigation of the influence and order of magnitude of the 
interaction terms, originating from the blade-to-blade flow variations 
inside a compressor blade row, has been presented by Smith (1966). The 
main conclusion is that the interaction terms are proportional to the 
blade loading or lift coefficient but that their effect is rather small, 
although their influence might be non-negligible in certain 
configurations with high loadings and secondary flows, for instance in 
turbine passages. 

A similar analysis, performed by Hirsch (1975), for the contributions 
arising from the two-dimensional wakes of the blades shows that the 
interaction terms are proportional, outside the blade passage in the 
vicinity of the trailing edge, to the loss coefficients of the 
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corresponding blade section. The influence of these terras has been 
found to be generally negligible although, in regions of high losses 
such as the sections close to the end-walls, their effect might need to 
be accounted for. 

In addition to the two-dimensional effects, three-dimensional effects 
due to secondary flows and local vorticity production can strongly 
influence the averaged flow, through significant contributions to the 
interaction terms. 

This is also confirmed by an experimental investigation in a transonic 
compressor rotor, Sehra (1979). It was shown that the magnitude of 
these terms has a non-negligible effect on the averaged flow in the end 
wall regions and that the omission of their contribution led to an 
inacurate prediction of the radial flow distribution, see also Sehra and 
Kerrebrock (1981). A recent evaluation of the relative importance of 
these interaction terms has been presented by Jennions and Stow (1985), 
for turbine vanes with strong three-dimensional flow patterns. 

Hence in general, the contributions of the secondary stresses will have 
some influence on the averaged flow, mainly in the endwall regions and 
in the main blade part, unless the blade rows contain lightly loaded 
blades or generate small secondary flows. 

2.3.3.  Passage averaged energy equation 

The averaged energy equation is obtained from the general form given by 
equations (1.2.50) to (1.2.52) written for a relative system. Writing I 

•* > 

instead of H and w instead of v, one obtains, within the assumptions of 

the distributed loss model, equation (2.1.9), 

|^ (pE*b2) • v1 (pWIba) = - $ (pw»I"b2) • b2Qb (2.3.3D 

where the additional source term Q is defined by equation (1.2.52), but 

takes on the particular form of equation (1.2.53) in the present case of 
a turbomachinery blade passage. 

3b2 
Qb " bT tp 3t ] " P?-"B (2'3'32) 

In this relation, f is the body force defined by equation  (2.3.6) or 
•* 

(2.3.15),  and LL  is the blade displacement speed in the considered 

reference system.  That is, for a rotor in the relative system 

uB - 0 (2.3.33) 
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and 

uD - u - a) x r 
D 

in the absolute system. 

It is seen from the above equations that the density weighted averaged 

total energy represented by the averaged rothalpy I 

w2  u2 "\ -h * r" r 
(2.3.3*0 

~      W2  u2  pw".w"  ;   pw".w» 
h + 5 5- + *  - I •  E  

2p 2p 

cannot be considered as constant anymore along a streamline for the 
steady relative flow. Indeed, in the relative steady state situation, 
equation (2.3-31) becomes, after introduction of the continuity equation 

(pW.v^I - - J- vXpwT'b,) (2.3.35) 

or 

'"mk"1  = - o7^Pw"I"^) (2.3.36) 

where 

w
m h m "r. h + w, h (2.3-37) m 9m   r 3r   z 9z 

is the derivative along the averaged meridional streamline m. This 
important equation (2.3-35) shows that the averaged total energy varies 
along a streamline, as a consequence of the non-axisymmetric energy 

fluxes pw"I". 

These energy fluxes are due to the transport of the energy fluctuations 

I" by the non-axisymmetric velocity field w", where 

I" - h" + w».W • !££ - pw"w" (2.3.38) 
2    2p 

represents the deviations from the axisymmetric energy I. 
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One of the main contributions to these energy fluxes will come from the 
secondary flows, transporting low energy fluid from the end wall regions 
to the blade surfaces and the main stream region of the blade passage. 
These effects can be important and influence the overall energy exchange 
within a blade row, see for instance Sehra and Kerrebrock (1981), Adkins 
and Smith (1981). 

The energy conservation law can also be written for the total energy of 

the averaged flow 1 defined by equation (2.3.3*0. One obtains, instead 

of equation (2.3.31) 

3pb 
|^ (plb2) + ftpW.Iba) = -^- -  ^(pw"I"b2) - v^pW.kbJ • b2Qb   

C2*3*i9) 

where k represents the average kinetic energy of the large scale 

fluctuations, 

•* 

-."  pw".w"  .„ (2.3.40) 
pk - ^-^— - pk" 

Equation (2.3.39) shows that the total energy of the density averaged 
•* 

flow does not remain constant along an averaged streamline following w, 
in the steady state limit. This is an essential limitation of the 
averaged flow model for turbomachinery computation, since the general 
procedure in practical calculations is based on the constancy of energy, 
in conjunction with Crocco's form of the momentum equation. 

2.3.4. Crocco's Form for the Averaged Momentum Equations 

In the averaged formulation, Crocco's form can be derived either 
directly by averaging the three-dimensional form of equation (2.1.8), 
Hirsch and Warzee (1979), or by introducing the entropy and the enthalpy 
in the averaged momentum equation (2.3.21), following section 1.2.4. 
This second procedure requires the averaging of the entropy relation 

p TVs ^h-vp (2'3-'41) 

The averaged pressure gradient gives rise to the body force as seen from 
section 1.2. and the definition (2.3.6). Hence one has, after 
averaging 

P^u " h~  $(pb2) - pf - ptfh - pT^s .(2.3.42) 
D    D 2 

This could be worked out following section 1.2.4; but the second term 
on the right hand side can be simplified if it is considered, in 
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accordance with the distributed loss model assumptions, that the entropy 

s and the friction force F_ are averaged, mean quantities. Hence with 

s-s, the entropy term becomes equal to pTVs.  The enthalpy term is 
averaged in the following way, applying the rules of section 1.2. 

p$h - J- $(phb2) • [ph.n] J - hv"p (2.3.43) 

The last term can be decomposed as follows, introducing h - h • h" 

h.%  - jj- $pb2 + h".vV * jj [pn] (2.3.^^) 

Combining this relation with equation (2.3.43), gives finally 

pvh - ptfh • [ph".n] 1 - h-Sp (?.3.*5) 

where the second term on the right hand side is the new expression of 
the body force 

Pb2f
(h) - -[ph-.n] ^~ (2.3.16) 

Equation (2.3.^2) becomes 

$p - p?_ - J- $pb2  - pf - pvti - pr  - h"^p - pT^s       (2.3.47) 
D    D , 

An additional interaction term is introduced here, namely h"Vp which can 

be approximated in practical computations by 

h'^p - h'^p • h"vV -  fWp (2. 3.48) 

since the second term can be expected to be of a lower order of 
magnitude. 

Introducing equation (2.3.47) in the averaged momentum equations leads 
to the following form of the averaged Crocco's momentum equation 

k « - W x ? - fts - fl  • t.  • ?(h) - -1- v-(p> x >b.) • *&£•     (2.3.H9) 
3t f       b,P p 
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where the averaged absolute voriticity is defined by 

I -txt (2'3-50) 

The total energy gradient term appearing in this equation contains the 

total energy of the averaged flow I.  In practical computations, where 

the averaged quantities h, W are calculated, this quantity is the 
obvious one to consider, since it is only dependent on the averaged flow 

variables. This is not the case for the averaged total energy I which 

depends also on the large scale flow deviations from axisymmetry w". 
However, neither of these quantities are conserved along a streamline of 
the density averaged flow in steady state conditions. The implications 
of this situation have been discussed by Sehra (1979) with respect to 
the interpretations of overall radial equilibrium as described by 
equation (2.3.49) and more recently by Hirsch and Dring (1986). 

Compared to the corresponding momemtum equation (2.2.5) of the 
streamsurface approach, similar terms are obtained here, with the 
addition of the already discussed interaction terms. The projections of 
equation (2.3.49) follow closely the formulas given in section 2.2.1, 
with the projections of the interaction terms calculated in section 
2.3.2. The particular projection defined by equation (2.2.73) is 
obtained in the same way but the projection of the secondary stress 

-» 
gradients on the direction N, has to be added. 

Alternative formulation of the averaged energy equation 

By introducing the total energy fluctuations (2.3-38) into the energy 
equation (2.3.39), one obtains 

|^ (plb») + v^pWlbJ = |^- (pb2) - vXpw"h"b2) - $(pwk"b2) 

+ $(T(s).i}b2) + baub 

(2.3.5D 

One can notice the appearance of a contribution from the work of the 
secondary stresses against the averaged flow, in addition to terms 
describing a diffusive effect of the fluctuating energies h" and k". 

Observe also that the term V(pwk"b2) contains the full velocity vector w 
•+  + 

- W + w". 

In steady state conditions, the above equation becomes 
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$(pWIb2) - -$(pw"h"b2) - ^(pwk"b2) + $(TStfb2) • b2Qb      (2.3-52) 

The secondary stress term can be decomposed, in analogy with the viscous 
•S "* ~* 

shear stress contributions in a pseudo dissipation term (T .V)W and an 
~*  A  MS 

energy producing term (W.V)T . Sehra and Keerebrock  (1981) postulated 

that the former term plus the kinetic energy term v(pwk"b2) were lost to 

the main flow and hence dissipated, leading to an irreversible entropy 
production. 

However, there is presently too little experimental evidence to confirm 
or infirm this hypothesis. 

2.3-5.  Blade-to-Blade Flow Equations in the Averaged Flow Model 

Since the through-flow is represented by an average flow, the only 
consistent assumption with regard to the blade-to-blade flows consists 
in assuming the corresponding streamsurfaces to be surfaces of 
revolution. 

In (e,m,n) coordinates, the blade-to-blade flow equations are obtained 
by considering the tangential component of the momentum equations for a 
streamsheet of thickness B,= Bi(m).  Therefore one obtains exactly the 

same equations as described in section 2.2.5. 

2.3.6. Quasl-Three Dimensional Interaction for the Averaged Flow Model 

The only quasi-three dimensional interaction possible here is the 
simplified interaction whereby the role of the mean streamsheet is 
played by the averaged flow considered in a true meridional plane. 

The blade-to-blade streamsheet thickness Bi as well as the location of 

the meridional streamlines m are an output of the through-flow 
computation of the averaged flow. The averaged flow is first computed 
with an initial approximation whereby all the secondary stresses are set 
to zero, that is, an axisymmetric flow approximation. This delivers 
also the boundary conditions on the different blade-to-blade sections. 
After the computation of the blade-to-blade flows an estimation of the 
interaction terms can be obtained from the blade-to-blade flows 
distribution, but also from additional, direct estimations of secondary 
flows and streamwise vorticity, Hawthorne (1955). A new iteration cycle 
can then be initiated for the through-flow including the interaction 
terms. 

This procedure has been applied, and developed into a prediction and 
design system, by Jennions and Stow (1985), who performed also a 
detailed investigation of the comparative influence of the different 
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contributions  to  the radial equilibrium equation, including the 
interaction terms. 

Relation between streamsurface and averaged formulations 

The question arises actually in the description of turbomachinery flows 
as to the equivalence of the averaged flow representation and the meaan 
streamsheet representation  used  in  the  simplified  quasi-three 
dimensional flow description discussed in the previous section. This 
topic has been discussed in particular by Horlock and Marsh (1971). 

If a mean streamsheet is defined by angles 8' and e1, is there a choice 
of values of 0' and e' which will render the two representations 
identical ? 

Comparing the equations of the two models, a first conclusion arises 
from the energy equations (2.2.51) and (2.3.35). It is clear that 

neither the total energy of the averaged flow I, nor the averaged total 

energy I, are able to represent the total energy along the mean S2 
streamsurface. For a steady state flow, equation (2.2.51) gives with 
the definitions (2.2.11), (2.2.15) and the orthogonality relation 
(2.2.19) 

while equation (2.3.36) leads to 

91 pWm |S ' " bTF CaT (Pwr
I,,b*r> • §£ <pwjl-btr>] (2.3.5D 

Unless the right hand sides of both equations are zero, which is the 

case in an axisymmetric flow, no general choice of I would render the 
energy fluxes of the interaction terms zero. With regard to the body 
forces in the two models, a comparison has to take into account the 
contributions represented by equation (2.3.22). 

If the pressure variation between pressure and suction surface, at a 
constant radial and axial position, is linear, equation (2.3.22) shows 

that the force pfD becomes identical to the corresponding term in 
D 

equation (2.2.8) if the mean S2 streamsurface is selected to be 
identical with the camber line. 

Indeed, with this assumption the body force equation (2.2.30) becomes 

•* 3D    *  Pa ' Pn 
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and  is  identical  to p?(1)   if 6'  - 6'    and e'   =  e' r 
However, for a more general pressure variation law, the two body forces 
will not be equal, unless the blade thickness is constant or zero. This 
corresponds to an infinitely thin blade and a mean streamsheet following 
the blade surface. 

In addition, as discussed previously the interaction terms in the 
momentum equations are non-negligible except for lightly loaded blades 
generating negligible secondary flow effects. This would be the .ase 
for instance for highly spaced, low cambered cascade blades or with 
thin, many bladed cascades. 

Some direct estimations in simplified cases of the different 
contributions to various flow representations can be found in Horlock 
and Marsh (1971). 

It is to be concluded from these considerations, that in general, it is 
not possible to define a mean S2 streamsurface on which the flow 
variations are identical to the averaged flow variations. Considering 
that the averaged flow model describes correctly the behavior of the 
real physical average flow over the blade spacing, the flow on a mean 
streamsurface will not be able to represent correctly the averaged flow. 

Only in the hypothetical case of an axisymmetric flow, will both models 
be identical. Therefore, the interpretation of the calculated local 
behavior of the flow variables along a mean S2 streamsurface should be 
taken with caution when considering them as representative of the 
averaged actual flow. 
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2.4.  THROUGH-FLOW COMPUTATIONAL METHODS 

Several methods have been developed for the numerical resolution of the 
through-flow equations in an arbitrary, multistage, turbomachine and 
they can be classified in two broad families. The first family is based 
on the solution of the momentum and continuity equations for the 
physical variables, while the second family is based on the introduction 
of a streamfunction in the meridional coordinates (r,z) leading to a 
second order partial differential equation for the streamfunction. 

Within the first family, the streamline curvature method is based on an 
equation for the meridional velocity w (=v ), along a given calculation 

mm 
station, obtained from the stationary momentum equation. The dependence 
of the flow on the Other coordinate is expressed through the curvature 
of the meridional projection of the streamlines; hence the name of the 
method.  The streamline curvature method was developed for through-flow 
computations in its contemporary form in the early sixties, Katsanis 
(1964),  (1966), Smith (1966), Novak (1967), Jansen and Moffatt (1967) 
and is still widely used. 

The streamfunction approach was introduced by Wu (1952) in a finite 
difference discretization and renamed matrix through-flow method by 
Marsh (1968). The same approach has been followed by Davis and Millar 
(1972), (1976), Davis (1975), Biniaris (1975), Bosman and Marsh (1974), 
Bosman and El Shaarawi (1977). 

The discretization of the same streamfunction equations by finite 
elements has been introduced independently by Adler and Krimerman (1974) 
and Hirsch and Warzee (1974), (1976). 

The various methods will be discussed in this section from the point of 
view of the numerical approach, leaving aside any detailed 
considerations with regard to the necessary empirical input under the 
form of loss coefficients and turning angles as discussed in section 
2.2.1. 

2.4.1.  Axisymmetric Through-Flow Equations 

The current approximations in through-flow computations assume relative 
steady flow situations at constant wheel speed u>r and some form of 
axisymmetry of the flow configuration. Actually, within the 
streamsurface approach, the equations along the S2 streamsheet are 
formally identical to the axisymmetric flow equations since the 
replacement of the streamsurface derivatives by ordinary derivatives 
leads to the axisymmetric equations. Hence, within the streamsurface 
approach, the distinction between the flow along an arbitrary S2 
streamsheet and an axisymmetric flow is a matter of interpretation, the 
numerical resolution techniques being identical in both cases. 

This is not the case within the passage averaged model, since the extra 

terms represented by the secondary stresses v.T  in the momentum 
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equations and by the additional energy exchange and dissipation terms in 
the energy equations, vanish only in the axisymmetric assumption. 
Within a complete quasi-three-dimensional computation, as discussed in 
section 2.3.6, the first step of the calculation will be based on an 
axisymmetric through-flow, while the next iterations will introduce some 
estimations of the interaction terms between the averaged flow and the 
non-axisymmetric contributions, and take into account their 
contributions to the momentum equations as well as on the energy and 
entropy equations. Since the basic approximation is based on the 
axisymmetric assumption, we will consider in the following all methods 
as applied to the axisymmetric through-flow models. 

As shown in the previous sections, the through-flow equations consist of 
the steady state form of the mass conservation equation, one of the 
meridional (axial, radial or any combination such as the N-component) 
projections of the momentum conservation law, the tangential momentum 
equations, the energy Conservation and the entropy equation connecting 
the stagnation pressure variation to the empirical loss coefficients. 

The through-flow equations can be summarized, within the axisymmetric 
assumption as follows, in cylindrical coordinates 

Continuity equation 

|p (pbrwp) + |^ (pbrwz) - 0 (2.4.1) 

Radial equilibrium equation 

wL_w,-liP + le + F  • t (2.4.2) 
m 3m r    p 3r  r    fr    Br 

Alternate form 

w 
w {%- w -i-w)-T|^-|i*F,  *  tB    • — ~  (rv )      (2.4.3) z 3z r  3r z     3r  3r   fr    Br  r 3r   8 

Axial momentum component 

w |- w - - - |£ • F,  • fQ (2.4.4) m 3m z    p 3z   fz    Bz 
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Alternate form 

,3      3   , „, 33  31  W6 3  ,   , L _   t „        (2.4.5) w (— w - — w ) » T — - — • — — (rv ) + F   + f 
V3r z  3z V 3z  3z  r 3z u V   fz    Bz 

Tangential momentum component 

?w»!i<rV "Ffe +fBe (2^-6) 

Energy equation 

pwm |i - 0 (2.4.7) m dm 

Entropy equation 

The friction force F,=»-F.1  is defined by 
I  I w 

Twm |i - -w.F_ - w.Fr (2.4.8) m 3m     r     f 

and the meridional convection operator is defined by 

Wm h   '    Wn h   + W, h (2.4.9) m 9m   r dr   z dz 

The body force is normal to the streamsurface S2, in the streamsurface 
approach, or to the mean camber line in the averaged formulation, under 
the axisymmetric assumption, that is 

?B - rf0n (2.4.10) 

according to equations (2.2.30) to (2.2.32) or equations (2.3.22) in the 
appropriate interpretation with 

n n 
r z - tan c' 

n„ n„ e e 
tan B1 (2.4.11) 

and 
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?B . w - 0 (2.4.12) 

For the averaged flow model it is assumed that the flow is tangent to 
the mean camber line, according to equations (2.3.18) and (2.3.22). 

The above equations are valid outside the boundary layer regions, since 

the friction force F_ is not resolved and is related to overall 

empirical loss coefficients. However the complete through flow is 
influenced by the end wall boundary layers, through the blockage effect 
introduced by their displacement thickness and through their effect on 
the overall energy exchange process, Smith (1969). 

The passage averaged equations allow in addition to define a coherent 
interaction between the meridional through-flow and the end-wall 
boundary layers developing along the hub and shroud walls of a 
turbomachine, figure 2.4.1. 

A consistant theory describing the influence and interaction of the end 
wall regions and the main flow has been presented by Mellor and Wood 
(1971), and further extended by Hirsch (1974), (1976), Horlock and 
Perkins (1974), De Ruyck, Hirsch and Kool (1979), De Ruyck and Hirsch 
(1981), (1983). 

Within the passage-averaged flow representation, the mainstream through 
flow will be described, for instance by the radial component of the 
momentum equation in an axial flow machine, in addition to the 
continuity equation and the energy and entropy laws. Within the same 
representation, the end wall boundary layer equations will make use of 
the other two components of the momentum equations. 

2.4.2.  The Streamline Curvature Method 

The streamline curvature method is based on the transformation of the 
"meridional" momentum equation,  that is either the radial or axial 
component or the projection of the momentum equation along any direction 
in the (r,z) surface,  into an ordinary differential equation for the 
meridional velocity w  in function of the distance along selected 

m 
calculation stations joining corresponding points on the hub and shroud 
surfaces. 

An arbitrary calculation station is displayed on figure 2.4.2, joining 
two points A and B on the hub and shroud surfaces. The station may be 
curved and is defined by the local angle Y with respect to the local 
radial direction. The angle Y is defined as positive from the radial 
axis towards the station AB.  Hence "Y is positive on figure 2.4.2. 

The distance along the calculation station AB is denoted by 1 and an 
equation is sought for the variation dw /dl along that station AB. 

m 

The whole computational procedure consists in sweeping through the 
meridional section of the machine, from a calculation station at inlet 
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of the machine towards the outlet station, solving for the radial 
distribution of flow properties along each station. The meridional 
velocity distribution along a calculation station is adapted in order to 
satisfy mass flow conservation along each station and the whole 
procedure is repeated until convergence is reached. The radial flow 
distributions at different stations have to be consistent with each 
other and the normal acceleration which a fluid particle undergoes has 
to be taken into account as it influences the interaction of flow 
properties between successive stations. This is obtained through 
assumptions for the meridional streamline shape and its slope and 
curvature as it interconnects the different stations. The details of 
the procedure are given in the following. 

The basic equation for dw /dl can be obtained in a variety of 

written in many different, but equivalent forms, 
(1966), Smith (1966), Novak (1967), Wennerstrom (197*0, 

ways and 

Katsanis (1964), 

Defining a total force vector F 

FT F  + f rf  JB (2.4.13) 

the radial equilibrium equation becomes 

3        1 dp   9 t   _T w  r— W =--•?*-+   — +F m 3m r p 3r 
(2.4.14) 

or 

,3      3   , 
W (T— W  - -r-  W ) z 3z r  3r z T §£ - £ • FT • -i i- (rv ) 3r  3r   r  r 3r UV 

(2.4.15) 

while the axial component takes the form 

W  r— W m 3m z 
I3R* FT 
p 3z   z (2.4.16) 

or 

,3_     3_  .    3s  3I + _93_f   w RT 

Vsr wz " 3z V    3z ~ 3z  r 3z (rVQ} z 
(2.4.17) 

If the complete form of the passage averaged equations are solved, F 
will be defined by adding the secondary stress term to equation 
(2.4.13), see equations (2.3.21) to (2.3.30). 

Momentum equations along calculation stations 

Referring to figure 2.4.2, the derivatives with respect to (r,z) can be 
replaced by derivatives with respect to m and 1 along the meridional 
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streamline and the calculation station AB. 

One has, with Y positive when 1 is located left of the radial axis, as 
on figure 2.4.2, 

!=- - COSY i- - sinY ~ (2.4.18) 31       3r       3z 

3.3       3 
ai * 3ino 3F + COS0 3z" f- - sino ~  + coso |- (2.1*.19) 

or 

cos(o-Y) |- - coso |r- • sinY ~ (2.14.20) 3r       31       3m 

and 

3        3        3 
cos(o-Y) -r- - cosY r sino rv (2.4.21) 3z       3m       31 

The radial and axial momentum equations are combined by multiplying 
equation (2.4.14) by cosY and equation (2.4.16) by (-sin Y) and adding 
up, applying equation (2.4.18) 

w (cos Y |- w - sin Y {L w ) - - 1 |E • !i cos Y • F?      {2'*'22) 

m      3m r       3rn z     p 31  r 1 

where 

FJ » cos Y FT - sin Y FT (2.4.23) 1        r        z 

•T is the projection of the total force F on the 1 direction. 

With 

w - w sin o (2.4.24) r   m 

one has 

a a      wm ' cos ° 
f- w - sin o.f- w - -2—  (2.4.25) 
dm r       3m m      R m 

where the radius of curvature of the meridional streamline R  has been m 
introduced according to equation (A.6.40) 

-1  3o 
R   3m <2-*-26> m 
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Similarly 

9           3 
T— W  » COS 0 r— W 
dm z       dm m 

leading to 

1 dp     m 
P 91    Rm 

cos(o - Y) -  sin(o - 

Note that with this definition Rm is negative for a concave streamline, 

such as shown on figure 2.1.2. 

+ ^ET1  • w (2.1.27) R     m m 

v2 

r)w I-  w + — cos Y • FJ    (2.1.28) m dm m   r        1 

This equation has to be coupled to the energy equation in order to 
obtain an equation for 9.w .  This is achieved explicitely by using 

Crocco's form of the momentum equations, equations (2.1.15) and 
(2.1.16). 

The same procedure leads to the equation for w =w (1) along the mm 
calculation station AB : 

w2 w 
w
m IT 

w
m ' sin(o-Y)wm jL wm - cos(o-Y)-^ - T If- • If - -5. !r(rvB)-F*<2.4.29) m 31 m m dm m R     91  91  r 91  8  1 m 

The estimation of the gradients of s, rv and I is performed according 
0 

to the discussion of section 2.2.1. Note that the particular case Y-0 
corresponds to a radial station, while Y-±ir/2 is an axially oriented 
station. For a radial station, one obtains 

9             9           Wm „ 9s  91  W6 9  ,   ,. „T  ,. „ ... w — w - sin o w r— w - cos o =-r - T ^— +  — (rv.)-F  (2.1.30) m 9r m        m 9m m       R 9r  9r  r 9r   8  r m 

T 
Outside bladed regions, the force components F. vanish as well  as  the 

meridional entropy and total energy gradients because of the assumption 
of axisymmetry. However, if wake effects are taken into account these 
terms might not be zero and have to be estimated through the 
introduction of appropriate wake flow models, Hirsch (1975), Hearsey 
(1975). 

When the computing station AB is orthogonal to the meridional 
streamline, that is, Y-o, the first term on the right hand side of 
equation (2.1.29), describing the streamwise acceleration due to the 
meridional variation of the meridional velocity component w , vanishes. 

However, for arbitrary calculation stations, this will not be the case 
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and this term has to be evaluated.  In early through-flow calculations 
in axial flow machines, with calculation stations located only outside 
the bladed regions this term was often neglected.  In more general cases 
and when calculation stations are located inside blade rows, this will 
not be justified and the term 3 w has to be taken into account. So mm 
more that its variation might become important at transonic Mach number 
ranges.  Indeed, equation (2.2.84) shows that the variation of mass flux 
pw is related to the variation of w by the following equation valid 

for isentroplc,  isoenergetlc conditions, H-constant,  in an absolute 
reference system 

6(pw) - p(1 - M*)6wm - pM M..6vQ (2.4.31) m mm    m 6  0 

Hence an alternative form of the meridional velocity equation is 

obtained from an explicit evaluation of r- w , v 3m m 

Evaluation of meridional streamwise acceleration - Design problem 

3w 
In order to evaluate the term T—, the continuity equation is introduced 

with equations (2.4.20) and (2.4.21), leading to 

w w 
~!h h  <Pbr> * „oqiv^ twm |f + cos(o-Y) f- wm * sin(o-Y) ^] - 0 (2.4.32) pbr 3m       COS(T+O)  m 31 dm m R m 

Since, in general the turbomachinery flow is not isentropic because of 
the friction force Ff representing the stagnation pressure losses, 

equation (2.2.82) has to be replaced by the more general relation, 

(2.4.33) 
6^  6h  6s 
p " aT " R 

where 6h is obtained from the energy equation (2.4.7) 

Here R has been used for the gas constant in order to avoid confusion 
with the radius r. 

Equation (2.4.31) is to be replaced by a more general expression 
obtained from (2.4.33) where the definition of I has been used. Since 
the right hand side of equation (2.4.31) corresponds to the first term 
of (2.4.32), the density variation in the m-direction becomes 

Wm  3p   M2 3      (r)  M 3 u   
Wm  u2  .     wm 3s    (2.4.34) 

— • sr- - -M* ^— w -M.  M ^— w„ + — •  —r sin o - =— ^~ p   3m    m 3m m   6   m 3m e  r   az       R 3m 

(r) 
where the relative Mach number component M   is introduced 
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M(r)  
We  M  u (2.4.35) 

e    a   6  a 

with the definition sin o - 3r/3m. 

Introducing equation (2.4.34) into equation (2.4.32) leads to the 
following expression for the acceleration term 3w /3m 

(1 V 3i Wm   Vb 3i  °  F) ~r~" + cos(o-Y) 3T +  R ] 

m    (2.4.36) 

•„<'>„ 9-w • JE33 
0   m 3m 6   R 3m 

The meridional derivative of the tangential relative velocity can be 
eliminated through the use of the tangential momentum equation (2.4.6), 
written as 

J»L. (rv ) - FT (2.4.37) 
r 3m krV   6 

T where F. will generally be taken to be zero outside the blade rows.  In o 
the design problem, rv is specified within a blade row, while in the 

8 
analysis case vQ has to be expressed in function of meridional velocity o 
and the specified flow angles. The 3w /3m term in equation (2.4.36) 

o 
becomes 

„(r)M L. WQ - 4 r! - w [M» - (»>'] aiIL« (2.4.38) 
6  m 3m 9  a2 9   me   a    r 

leading to the following form for the meridional variation of w , 

n-M«) 3_ w . -w [1 • • ]  i£ • tan(o-Y) • (1+M
2) 3ln °] K       m'   3m m    mLb 3m  cos(Y-o) 31     R        V  r  J 

m (2.4.39) 

• "'  F
T • i {£ 

a* e   R 3m 

Introduced in equation (2.4.29), the basic equation written as an 
ordinary 

obtained 

ordinary differential equation for wm"Wm(D along the station AB, is 

w |r-w - A w2 + B (2.4.40) m dl m     m 
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1      Mm cos  (o Y) am(o-Y)   f1   3b 1 3o      sin o  MtM2n 

(1-M2)R    cos(o-Y) 1-M2       Lb  dm      cos(c-Y)   31 r       u     8;j 

mm m (2.4.41) 

sln(o-Y)       "_Q      RT      sln(o-Y)   3s 
(1-M2)a2   *   wm  *   re       R(1-M2)     3m mm m 

B - M. T 3s - !§. i_ (rv   )  - F
T (2.4.42) 

31      *   31      r    31  ^rV        1 

The equations (2.4.40) to (2.4.42) are to be used outside blade rows 
with 

T 
F    - 0 outside blade rows (2.4.43) 

0 

and also inside blade rows with a design option whereby rv_ is specified 

as the input information from the blade-to-blade flow. Note also the 
appearance of the O-M*) factor which is an expression of the range of 

ellipticity of the through-flow equations as discussed in section 8.2, 
when rv. is specified. 

When flow angles are specified, - the analysis case - the terms 
containing derivatives of tangential velocity components have to be 
explicitely calculated in function of meridional velocity and flow 
angle. 

Analysis Problem - Flow angles specified 

With 

v w 
— - tan a - — • — - tan 6 • —               (2.4.44) 
w w   w          w 
m mm         m 

one has 

3 3 3 
•r-  (rv ) - w -r- (r tan a) + r tan HT-W,, 
3m   8    m 3m 3m m 

3 3 
- w T— (r tan 6) + r tan 6 r— w + 2u.sin o m dm dm m 

(2.4.45) 

and 

3 3 3 
rr (rv ) - w — (r tan a) • r tan a  rr w 
31   8    m dl aim 

3 3 
- w —•  (r tan B) + r tan B IT W + 2u.cos Y m dl dim 

(2.4.46) 
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Within blade rows, the full dependence of 3w/3m on the other flow 

variables,  in particular the flow angle 6, becomes instead of equation 
(2.14.36) 

3o JL tan(o-Y) 0-M*-M(r)") i_ w .-„[!!*•  J , 3° • ±•L K      m 8  '  3m m    mLb 3m  cos(o-Y) 31 
(2.1.17) 

Introducing equation (2.1.17) in equation (2.1.29) and replacing the 

term w./r Tr(rvQ) with 
o       dl     0 

for the momentum equation 

term w./r Tr(rvQ) with equation (2.1.16), leads to the following form 
6    dl   9 

(1 + tan 6 tan a)w f=- w = A,w2 + B, (2.1.18) m 31 m   1 m   1 

(r)2 
1-MV '     cos2(o-Y)   sln(o-Y) r1 3b     1    3o  sin o 

" " f1-M(r)%R ^fn-vl "  l-u^)2  5 3m   COS(O-Y) 31      P (1-M   )Rmcos(o-Y)   1-M (2.1.19) 

« * S" - 5 ^ 

B, - |i - T £ - rj (2.4.S0) 

(r)2 
Note the appearance of the factor (1-M   ) in the denominator.  This 
form is limited to problems with fully subsonic relative Mach numbers 
(or fully supersonic). 

In practical computations inside blade rows, it might be more 
appropriate  to calculate 3w /3m directly by a finite difference 

approximation, using values from the previous iteration and apply 
equation (2.1.29) with equation (2.1.16) introduced for the last term 
when dealing with the analysis case. 

For Incompressible flows, equation (2.1.32) becomes 

w ..   w sin o     ,       „    , , ...      „ m 3b   m 1    r  3o . sin(o-Y)  -. J   3     .   „ „ ,,, T ~-  •   +  7 TTT- [W  rr +  5  W J + r- W  - 0     (2.1.51) b 3m     r     cos(o-Y)  m 31     R     m   3m m m 

while equation (2.1.28) can be transformed to the following form after 
the introduction of the rotary stagnation pressure 

p« - p • p % -  puve . p • p %  - p u-l <2-«.»> 
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J IF • r CO3(0-Y) " •*»<•-*>•. Is w
m * w

m IT 
w

m * T fi^V + FI (2-1,-53) 
m 

Combining both equations, one obtains the ordinary differential equation 
for w -w (1) valid for incompressible flows 

m m 

w ^ w - A w* + B (2.4.51) 
m dl  m     m 

with 

A " " D—„„*(„  v^ sin(Y+o) Lr 5- + _-.,/„ w\  rr  —«—J     (2.1.55) R COS(O-T) b 3m  cos(o-i) 31    r 
m 

_ 1 3p* _ W9 3  ,   . . T                 (2.1.5*) 
B * p 31 F5T(rve)  Fi 

The above equations are the basic formulation for streamline curvature 
methods, coupled to the mass flow conservation law in integral form, 

stating that the mass flow rate m is constant throughout the machine. 
One has, for the mass flow through station AB 

m,D - - 2*   pw cos(o-Y)b.B(e)rdl (2.1.57) 
AB       'AB m 

(e) 
where B   is the blockage factor introduced by the presence of the end 
wall boundary layers.  If 6* and 6* are respectively the hub and tip 

displacement thickness for the meridional velocity profiles along the 
(e) 

station AB, then the factor B   is defined by 

1-6* 
[  B P 

ft.n - 2ir       pw cos (o-Y)brdl (2.1.58) ,B     Jv«s 

For uniform flow conditions, one has equating (2.1.57) and (2.1.58) 

B(e) . S^ - SAB - 2*rA6* - 2irrB6«. (2.1.59) 

where S.B is the geometrical section through AB, given by 

SAB " 2* j  rdl ' 2<^-T^> ArB - rA)> • (zB - z^ (2.1.60) 

AB 
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for a straight, non curved, station AB. 

(e) 
Equation (2.4.59) can be used to define the blockage factor B    when 

the displacement thicknesses are known or estimated. 

Determination of force terms 

T The total force component F.  can be obtained from the tangential 

momentum equation (2.1.37) and the definitions (2.4.8) to (7.4.12). 

The blade force component fB1 is defined by 

fBl " fBr C03 " '  fBz Sin Y 

fB (tan 6' . sin Y -  tan e' . cos Y) 
(2.4.61) 

If a blade angle e' is defined in the plane (AB,e) that is by a section 

along the calculation station, then 

tan e' » r(^) 

,3e. 3r j  ,3b. 3z (2.4.62) 
• r(3r° 3T + p(5«) 31 

- tan e* . cos Y - tan B' sin Y 

Hence, the blade force component fB1 can be written as 

fBl * -fB6 tan Eb (2.4.63) 

The friction force is obtained from the entropy variation, as 

Ffe " Ff ~ " T ^~ dm m (2.4.64) 

3s 
- -T sin e cos B Tr- 

am 

The tangential component of the total force is given by 

FT.F  +f  ,JL|PT, (2.4.65) 
e  fe  Be  r 3m vrV 
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and from equation  (2.4.63) 

w 
fm- -tanebrli(rve)+ Ffetan E'b 

- -tan e' . -°- |- (rv.) - T —• sinB cosB tan e' 
b  r  am   9     3m b 

The 1-component of the friction force is obtained from 

Ffl - Ffr cos Y - Ffz sin Y 

w        w 

* "Ff (w~ cos Y " JT sin y) 

- -F cos B sin (o-Y) 

• -T |2. . cos2B sin (o-Y) 
dm 

Finally, the 1-component of the total force can be calculated from 

(2.4.66) 

(2.4.67) 

T 
F - F  • f 
1   fl   Bl 

(2.J4.68) 
w 

-tan e' — ~  (rv ) - T |^ [cos B sin(o-Y) + sin 6 tan e:]cos B 
b r 3m   9     dm b 

In duct regions, outside blade rows, fD1- 0 and eventually only the 

friction force might be ac< 

given by equation (2.4.67). 

friction force might be accounted for due to wake effects. Then Ff. is 
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2.1.3;  Numerical Techniques for Streamline Curvature Methods 

The complete numerical procedure for streamline curvature methods can be 
described by the following steps and considerations. 

a.  Initial mesh point distribution 

Given the meridional cross-section of the machine, calculation stations 
are distributed between an inlet and an Outlet section and the current 
station is indicated by I (figure 2.1.3). 

In addition, the through-flow is divided into a specified number of M 
streamtubes separated by (M + 1) meridional streamlines, the hub wall 
being streamline j-1, the shroud wall is streamline j-M+1. Since the 
streamline slopes o and curvatures R have to be determined at every 

point (I,j), the positions of the streamlines separating the different 
streamtubes has to be known.  Therefore, from one iteration to the 
other, the streamline position will be shifted in order to be in 
accordance with the newly obtained meridional velocity distribution w . 

m 
This distinguishes the streamline curvature method from classical finite 
difference or finite element methods, in that the mesh points (I,j) are 
not fixed in the flow domain but are displaced along the I-stations such 
as to follow the streamlines. Hence, at any interation, the j-lines 
will be considered as formed by streamlines limiting streamtubes of 

constant mass flow (m/M) and displaced at the end of the iteration after 
the w distributions have been obtained at all stations, 

m 

An initial location of the streamlines can be obtained by assuming 
uniform w distribution along each calculation station. 

m 

b.  Estimation of streamline slopes and curvatures 

This is a central point in the calculation procedure, since the 
curvature corresponds to a second derivative of the function r - r(z) 
along a streamline and its numerical estimation from a limited number of 
points generates high frequency errors. 

One has 

I-     d'r/ "'',,, U.U.69) 
m  (1 + tan2o) 

A detailed investigation of various formulas for dr/dz and d2r/dz2 along 
a streamline has been presented by Wilkinson (1970). From this analysis 
results that the best choice between 

i) spline curve fitting on streamline positions and (or) on its 
derivatives, 

ii) standard finite difference formulas of second order accuracy, 
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iii) various polynomial fittings, 

is undoubtly obtained for the standard finite difference formulas. 

Hence the best recommendation is to use the following formulas 

dr. 
dz 

d2r 
dz2 

. 1 (  I+H   I.J • I>J   I"? »J ) . tan 0        (2.4.7o) 
I.J  *      *I*1.J " ZI,J  ZI,J " ZI-1.J        i,J 

-      1       ( 
rI*1J " PI.J . rU " ri-1.J ) 

T 1  ZI^1.J " ZI-1.J  ZI+1.J " ZLJ  ZU " ZI"1.J      (2.4.71) 
11J p 

Another variant is used by Hearsey (1975), to the same order of accuracy 

o ( tan-i _Iild—hi • tan-i _LJ—i±l ) l 
I,J ZI*1.J    ZI.J ZI,J " ZI-1,J    z 

(2.M.72) 

°I.J * °I,J 
2 

+ 
oT ., - o. 

I_ . -   I.J   I.J 

»     1*1 .J   I'l.J 
2 

(2.it.73) 

The theoretical analysis of Wilkinson has been confirmed by Novak 
(1976). 

Another way of investigating the influence of the  estimation of 
streamline slopes and curvatures on the solution is reported by J. 
Denton in Hirsch and Denton (1981). 

A simple test case was chosen, consisting of a single blade row in an 
axial channel with a hub wall at constant radius and a casing wall 
formed by two circular arcs and straight lines such that discontinuities 
in wall curvature at the leading and trailing edge, from circular to 
straight lines, and at mid-chord between the two circular arcs, provide 
severe tests of the approximations. 

The number of stations was varied between a coarse grid with no internal 
stations except at leading and trailing edge and a finer grid with 1, 3 
and 5 additional internal stations. Using the same second order 
difference formulas, it is shown that with no internal stations the 
curvature at leading edge is underestimated leading to an "innacurate, 
overpredicted estimation of axial velocity and hence of flow angles. 
The inadequacy of computations with no internal stations is also 
confirmed by Novak in the same reference, Hirsch and Denton (1981), page 

- 113 



2^5. A single internal station covers most of the effects of curvature 
although the accuracy is raoderably improved by additional stations. 
Similar conclusions on the necessity of including internal stations have 
also been reached by Frost (1970). At the trailing edge, the curvature 
is shown to be insensitive to the number of internal stations as a 
consequence of the imposed values of flow angles. 

However, the estimation of the streamline curvature at trailing edge has 
a strong effect on the prediction of the downstream flow field. This 
can be shown in various ways, through equation (2.4.29). Assuming that 
s,I and rv. as well as w„ are uniform at trailing edge, the downstream 

o m 
variation of meridional profiles is uniquely influenced by the radius of 
curvature, since equation (2.4.39) reduces to 

tan(0 - Y) si wm - r 
m 

It can also be shown from actuator disk theories, Horlock (1978) that a 
shift in streamline of (Ar) will generate a curvature of the order of 
Ar/(Az)2 where Az is the axial distance between two points and 
innacuracies  on 1/R. m greatly  affect  the  meridional velocity 

distributions. This is fully confirmed by Denton's model calculation 
(see figure 2.4.4) where the effect of the number of stations used to 
calculate the curvature is clearly seen. These effects will be 
amplified for machines with strong curvatures such as centrifugal flow 
machines for which the computation could be excessively sensitive to the 
numerical estimation of the curvature. 

c. Determination of flow properties at station I » 1 

The flow variables are supposed to be known at station I. Within the 
axisymmetric approximation the stagnation values at point A at station I 
• 1 are obtainea from the known values at station I in the following 
way. 

The variations of angular momentum and entropy are determined as 
described in section 2.2.2. 

Within a blade row : 

ve - ve(m) 

B - 8 (m) 

s - s (m) 

for the design problem 

for the analysis problem 

Outside a blade row : 

is "V 
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when no wake or mixing effects are considered, otherwise equation 
(2.4.8) has to be applied. The stagnation temperature in the relative 
system is obtained from the energy equation . 

From 

and a perfect gas assumption, one obtains the relative stagnation 
temperature TJ through 

u2 
I - cp TJ - r 

Evaluation of the density 

The density is evaluated from the velocity field through 

-+2  1/Y-1 
P - p' (1 -  " ,,)• (2.1.71) 

^cp.io 

where the velocities are taken from the previous iteration and pj is the 

stagnation density in the relative system. 

From the knowledge of the density, stagnation temperature TJ and 

stagnation pressure pj (obtained from the entropy equation, see equation 

(2.2.60)) one can estimate the static temperature and speed of sound. 

The previous steps allow the determination of all quantities in the 
right hand side of equation (2.1.10), and the new distribution of 
meridional velocities along station 1+1 can be obtained from the 
integration of the ordinary differential equation (2.1.10). 

d.  Integration of meridional velocity equation 

Various methods can be applied to integrate equation (2.1.10), such as a 
Runge-Kutta method or, when linearising the coefficients, a first order 
linear equation is obtained, which can be exactly solved. 

Whatever method is applied, an initial value at a certain point is 
needed to initiate the numerical integration.  This reference value of 
w , w  can be taken at hub, shroud or any point along station (1+1). 
m  mo M+1 
Generally the value at mid station is chosen that is the value at J—5— 

M+1 
and the integration proceeds in both directions from j—=- to (m+1) and 

from this mid-point to j-1. The initial value of w  is arbitrary and 
mo 
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will be corrected iteratively until the w -w (1) distribution satisfies mm 
the conservation of mass flow at that station up to a prescribed 
accuracy, see equation (2.1.57). 

This is not a trivial step since the sign of the variation of mass flow 
with w  depends on the Mach number and is different in subsonic and mo   r 

supersonic regions, following equation (2.1.31).  Following Hearsey 
(1975), Novak (1976), the sign of the correction on w  is obtained from mo 
the variation of mass flow with respect to w .  Taking into account mo 
equation (2.1.31) and (2.1.57), one can write for fixed stagnation 
conditions and tangential velocity v. 

0 

!=- " ( p(1 • Mm> • IZT-  • dS (2.1.75) dw_ m   6w_ m0  ' m0 

where dS is the area element normal to the station 

dS - 2nrbB(e)dl cos(o-Y) (2.1.76) 

If the flow angle is fixed instead of v., one has from w =w tang and o o m 
equation (2.1.31) 

gL- f p(1 .H
(r),)!fdS (2.1.77) 

m0 m0 

(r) r* • where M   is the relative mach number M =w2/a2. 

The mass flow rate passes through a maximum at sonic meridional Mach 
number or sonic relative Mach numbers depending on the formulation of 
the problem that is, vQ or & fixed. This is an alternative formulation 

for the properties of the through-flow equations as discussed in 2.2.1. 

The variation ratio 6w /6w  can be evaluated either in an approximate 
m  m0 

way, through 

6w    w m    m 

m0   m0 

or through a more rigorous way by a direct computation. 

With the first assumption, equation (2.1.77) becomes 
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<!?r> " 4~ ( P(1 ~ Mm)wn,dS        v« fixed (2.1.79) dw     w mm 9 
m0    m0 

or 

(|5L_) . J— [ P(i - M(r)2)w dS        & fixed        (2.1.80) 
dw    w  j m 

The sign of the variations of mass flow with respect to w  is positive 
mo 

for subsonic Mach numbers and negative for supersonic velocities. Also, 
the local mass flow in a streamtube dS is maximum at sonic conditions 
and when this maximum value is reached the streamtube is said to be 
choked.  The large sensitivity of mass flow with respect to w ,  makes 

the estimation of w   delicate particularly in the vicinity of sonic m„ 

velocities or choking conditions. 

(r) 
If the Mach number M or M  , according to the problem treated,  is 

subsonic, the computed correction on w   can be determined from a 
m o 

relation of the following type, for subsonic flows 

<w» >   - (wm > • (m - m0)/(a3
5L) (2.1.81) m0        m0 c  dw 0 new     ° m0 

where m is the calculated mass flow with the current distribution of w 
c m 

and the given w . The same relation is used for supersonic velocities 
Big 

when the supersonic solution is desired. 

However, when a subsonic solution for instance, is looked for and the 

calculated derivative 3m/3w„  is negative,  which indicates that the m0 

initial chosen value of w  is on the supersonic side of the m-w m0 
K m 

relation tnen is is necessary to force (w )   to move towards the 
m new 

subsonic branch and impose a relation such as 

(V}   " K • V (2.1.82) 0 new       0 

with K>0.9 for instance.In the opposite case, K will be taken greater 
than 1. 
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Additional recommendations to control the variations of w  are given by m0 

Hearsey (1975) and Novak (1976). For instance, for a subsonic solution, 
(w_ )   should not be lower than a previous estimation w  which led to m0 

r m„ 0 new ° 
a supersonic solution and inversely when a supersonic solution is 
searched. 

With the new value of (w )   the numerical integration of the momentum m0 0 new 
equation (2.4.10)  is started again and the (w  ) values recalculated 

m0 

until conservation of mass flow is achieved to an imposed accuracy. 

Instead of the approximation (2.4.78) a better estimation of  (3w /9w ) m  m 0 

can be obtained by the Taylor expansion, Hearsey (1975) 

"J1) " wm 
+ U-lo) lr wm (2.4.83) m     m0        dl m 

from which one obtains 

9w 
m 1 

9w       .   . 9  .9   . (2.4.84) m0  1  (l-l.) w  (JJW ) 
m 

The derivative 9/9w  (9,w ) can be calculated from the momentum 
m   l m 

equations (2.4.40) - (2.4.42) or similar forms, (2.4.48) to (2.4.50). 

The above procedure can allow the computation of relative supersonic 
flows in the analysis case, when the type of solution which is sought, 

subsonic corresponding to 9rii/9w > 0, or supersonic 9m/9w  < 0 is 

specified by the user at every station inside a blade row. Otherwise, 
the present formulation does not allow to select the correct solution 
due to the non-unique relation between mass flow and Mach number; see 
also Marsh (1971) for a discussion on this point. 

e. Displacement of streamlines 

Once the new distributions of meridional velocities, consistent with 
mass flow, are obtained at all the stations, new estimations of the the 
streamline positions can be calculated. 

Referring to figure 2.4.3, the calculated position of streamline j at 
station I can be obtained from 
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wm " wm 
fAil . l      I - l      I        -     I.Jlnew I,j|old        (2 ^ g5) 

I.J "    I.j    calculated        I,j old ,3_ H  x 
^31 Vl.j 

A detailed theoretical analysis of the stability of the streamline 
relocation process has been developed by Wilkinson (1970). From this 
analysis follows that the repositioning of the streamlines has to be 
strongly underrelaxed in order to achieve convergent iteration cycles. 
Based on a simple model of a swirling flow in a cylindrical annulus, an 
estimation of the optimal relaxation factor can be found. A simplified 
version of Wilkinson's analysis is presented by Hearsey (1975) and Novak 
(1976). 

According to the problem solved, one has the following relaxation 
procedure 

^.jl   " 1I.j| ,A *  M(1I.j|  ,   " 1I.jL„)        ' (2.H.86) J|new    J|old      J|calc.    J|old 

1 
U"1 + K(1--•,«).(£)* (2-*-87) 

m  Az 

where Ar - 1 .   . - 1. fc is the length of the station and Az  is the 
shroud   hub 

meridional distance to the nearest station. 

Analysis problem 

1 

Az 

The constant K is in both cases of the order of 1/8 to 1/6.  These 
values of the optimum relaxation factors tend to zero when the spacing 
between stations is reduced, that is when the mesh is made finer. 
Therefore,  it is necessary to limit the spacing between stations on the 
lower side in order to avoid exessive slow convergence rates.  The new 
values of 1T     are then rised in order to displace the streamlines I,j|new 
and start a new iteration cyclus with updated values of streamline 
slopes and curvature.  Another variant is applied by Denton (1978), 
where the curvature is underrelaxed from one iteration to the other. 

Summary 

The streamline curvature method solves for the meridional velocity 
distribution along arbitrary calculation stations coupled to the mass 
conservation equation. 

The streamline positions are modified from one iteration to the next and 
this step, coupled to the estimation of the slope and curvature of the 

- 119 



streamlines, is the most delicate operation in the whole procedure. 
Practical experience, see for instance Davis and Millar (1975) for an 
interesting account of some available user's experience, shows that with 
the necessary care in the estimation of slopes and curvatures, accurate 
results can be obtained enven for radial and mixed flow 
machines,including return ducts. A recent report on the application of 
the streamline curvature method to radial compressors has been presented 
by Casey and Roth (198H). 

With regard to Mach number limitations, the general properties discussed 
in section 2.2.1  are confirmed by the properties of the mass flow 

derivatives Ora/3w ) through the sign of this function. As pointed out 

by Marsh (1971), when this derivative has a fixed sign, a unique 
solution is obtained for the iteration on the meridional distribution. 
This is the case for subsonic meridional velocities in the design 
problem and for fully subsonic or fully supersonic relative Mach numbers 
in the analysis problems. However transonic relative velocities can be 
treated if the user specifies which, from the subsonic or supersonic 
solution of the relation between mass flow and Mach number is to be 
selected. 
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2.1.1.  Streamfunction Methods 

An alternative to the streamline curvature method is provided by the 
introduction of a streamfunction tp, in order to satisfy the continuity 
equation. This leads to a second order, quasi-linear, partial 
differential equation for the streamfunction, which can be discretized 
on a fixed mesh, either by finite difference or by finite element 
methods. 

The continuity equation, (2.1.1) can be satisfied for any continuous 
function ty,  by setting 

1  3v w =   —— 
z  pbr 3r 

(2.1.89) 
-1  3y 

w •   -•*• 
r  pbr 3z 

Inserting these definitions in equation (2.1.15) for instance, leads to 
the following streamfunction equation 

3r (pbr 3r}   3z (pbr 3z>  wz 
LT 3r  3r  r 3r lPV  hrJ   ^•'»^0' 

This equation can be applied as long as w does not vanish, that is for 

axial flow configurations. For radial flow configurations, the axial 
momentum equation (2.1.17) can be used, leading to an equivalent 
streamfunction equation 

a ( i g* • » ( i ||, . 1 [T || . |I + !i » (rv ) • FT3  (2.,.91) 
3r  pbr 3r   3z  pbr 3z   w    3z  3z  r  3z   9    z 

This equation in turn ceases to be valid when the radial velocity 
component vanishes. 

A general form, valid for any flow configuration and which can therefore 
be applied in mixed flow machines with axial-radial transitions is 
obtained by introducing the N-component of the momentum equation, see 
section 2.3.1. 

Within the notation conventions of this section, where no distinction is 
made between the strearnsheet and the averaging approaches the 
streamfunction equation becomes 

Blade region 
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-(w, • we tan «.)(Tg-|i)] (2.4.92) 

" ? ttan »• fj; <rve> - tan e' jL (rv6)] 

In the axisymmetric approximation B', e' are the streamsurface or mean 
Camber surface angles with respect to the axial and radial directions 
respectively. 

Duct region 

3r ^pbr 3r;  3z kpbr 3z;  wj lV 3r  3r;  V 9z  3z' 

(2.M.93) 

* r Cwz IF <'V " wr Si (rve)]} 

For Incompressible flows, the same equations remain valid with 

s-0  ,  i . (P • p Hi - p Sl)/P  ,  H - (p + p *l)/p   C2.1.91) 

In the following we will consider either of these three forms, recalling 
that equation (2.1.92) is valid for all flow configurations. 

Hence, the streamfunction equation will be written as 

An alternative form is obtained by working out the left-hand side into a 
Laplace operator 

'»• t-1 h & - H fe (S5?> * o^' (2-"-96) 

or 

Av - q-pbr - w,, |- (pbr) • w^ ~ (pbr) (2.U.97) 
i     dZ Z or 

Equation (2.M.95) is elliptic for subsonic relative Mach numbers in the 
analysis case and for subsonic meridional Mach numbers in the design 
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option when rv is specified. This results from the general analysis of 
o 

section 2.2.1 but can also be shown directly on equation (2.4.95) using 
equation (2.2.81). 

In the analysis case, the d"vfl) derivatives of the right-hand-side 

contribute to the type of the streamfunction equation through equation 
(2.2.83). For the design problem, applying equation (2.2.81) gives 

m  r 3z   z 3r    r 3z     r z 3r3z   z 3r 

and one can write the streamfunction equation in the following form, 
with double subscripts on i>  indicating second derivatives 

(1   -  Ma)v       -  2M K  \|>       +   (1   -  M2)<ji       -   D r    rr r zTrz z    zz 

where D contains the terms of lower order in the ^-derivatives, 

D - q.pbr(1 - M2) • p(l - M2)(w„ |- br - WM jL Dr) 
m m  z dr r 3z 

This equation is elliptic for 

M2M2 - (1 - M2)(1 - M2) < 0 
r z       r     z 

or 

and hyperbolic for 

M2 < 1 (2.U.98) 
m 

M2 > 1 (2.4.99) 
m 

In the analysis case, when the flow angle is imposed, the streamfunction 
equation becomes, Wu (1952), with 

w 
tans - -p 

w 
z 

(1 • tan26) (1 - M2) *  - 2 (1 • tan'B) M M a 
r  rr r z rz 

* d " M^)2 - M2) Kz  - D 

which is elliptic for 
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Mv '   -  Mg   + M,2 • M2 < 1 (2.4.100) 

(r) 
that is for relative Mach numbers M   lower than one, and hyperbolic 

for supersonic relative Mach numbers. 

The determination of density 

One of the central problems with the application of streamfunction 
methods for compressible flows is connected to the non-unique relation 
between the streamfunction and the density. 

From the isentropic relation between static and relative stagnation 
variables, one has 

£_.(1- jL>i'tt-i> - d LMf ;£J/OM)      (  „     , 
p.   U   2 H,; U   2(pbr)2H'    2 H'' .U.i.lUlj 
0 0 0        0 

where 

|V*| 
2 

3 V 
3F  + 'dz (2.4.102) 

and where the stagnation quantities are considered in the relative 
system. 

For fixed values of the streamfunction gradient  |v>|2»  relative 
stagnation enthalpy H and stagnation density p , equation (2.4.101) has 

generally two solutions, one corresponding to a supersonic flow, the 
other to a subsonic relative flow. 

Indeed, equation (2.4.101) can be written under the form, valid for the 
design option, v. or w fixed, 

O 0 

e_. n - J!§ * ]im-n . F (fi_) 
PQ 2 H

0       (^T po (2.4.103) 
Po 

with 

IVi|»|2 Wm 
2(p'br)2H' p'   2 (2.4.104) 

° °        2 H'   (—) 
o    p 

For the analysis option, 0 fixed, one has 
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p•  L      2 H' (pbr)2 J 

I/CY-D 
ID; - 

p' " L'      2 H' (pbr] ro o 

. (, ..I,)""-') . F(fr) 

.   lv>|» (1 • tan2B)     w2 
A *  2 H' (p'br)2 p^ 

00        2 H' (-2) o p 

(2.4.105) 

(2.4.106) 

(pw )2 (1 • tan2B) 
m  

"    2 H' p'2 o Ko 

The relations p/p'-F(p/p') are represented on figure 2.4.5 and the 

solutions can be found as the intersections S1 and S2 between the 
function and the first quadrant bissector. 

The function F has an asymptotic limit for large values of p given by 

Fo" (1 -2^)1/(Y"1)    if    -e fixed 
0 (2.4.107) 

F - 1 if    B  fixed 
o 

The number of solutions for the density depends on the value of the 
constant A. Generally one will have two values of the density, given by 
the points SI and S2 of figure 2.4.5, for a given value of the constant 
A. 

Point SI is the subsonic solution while point S2 corresponds to a 
supersonic velocity. Points C are defined by the condition that the 
tangents to F equal one.  If point C lies  below the line F-p/pQ for 

instance curve 2, there will be no solutions for the density 
corresponding to the current values of the constants A. Indeed, the 
condition to be imposed in order to have two solutions 

F(C) > (Jr)r (2.4.108) 

where (p/p')- is defined by the condition 
O v 

F'(C) - 1 (2.4.109) 

the notation F' indicating a derivative with respect to (p/p'). 
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The limiting case being reached for curve 3 where F(C3) - (p/p')c,. 

From the definitions above, one has 

H' 1   „   2A      F ,     2    A   o 
~~r * P_ 

(
Y - 1 TET7 h) 

K'     PI P: 
1  (*L) (£_)   P_ Y " 1 (P-) 

o  Ho    Ko       Ko 

Considering a perfect gas assumption and the particular limiting 
position < 

conditions 

position of curve 3. for which F • p/p in point C3, one obtains the 

F'(C3) - M2 design option -rvn fixed m 6 

(r)2 
F'(C3) - M analysis option -B fixed 

(2.4.111) 

This shows that point C3 of curve 3 corresponds to the critical Mach 
number namely 

(2.4.112) 

M   - 1 design option 

(r) M„_ - 1 analysis option 

and that the critical density ratio is reached 

i   / ,\.    ,Y*K-1/(Y-1) ,, L Y-1 U(r)
2v-1/(Y-1) 

(p/Po)*C3 - (—) (1 • ^- MQ  ) design option 

(2.4.113) 
/ / .N.    ,Y*K-1/(Y-1) ,  , 
(p/pJ)*C3 - (~2~) analysis option 

The lowest value of (p/pj) is obtained by the  intersection of the F 

curve with the horizontal axis, that is by F-0. Hence 

/A / /1-W2/2HJ, rv fixed - design option , u      h. 
(p/pj)min - .     9 9 (2.4.114) 

/A B  fixed - analysis option 

The critical value of A, A» corresponds to curve C3, with the condition, 
deduced from equation (2.4.110), that 

H' 
2      A      • * 

(:FT * (p/pj)2 * T}     "  1 
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or 

Y-1 (Y+1) 
A» - ~ . (p/pj)*   ' (2.4.115) 

with (p/pj)* given by equation (2.1.113). 

The condition for the density relation, equation (2.4.103)• to have 
solutions, can be expressed by the condition that the values of A 
corresponding to curve C1 should be larger than A*. 

This is actually a condition on the mass flow per unit area pwn, since 
the critical mass flow is attained for w*-c* the speed of sound ————————— m 

Y-1 

- pj.(*!•)*. AY-I)HI (4) * 
Po Po 

Y-1 

(pwm)« - p« /(Y-1)H« (4) 2  " ^  Pi /2HJ (2.4.116) 
m po 

Hence, the condition A < A* becomes in all cases, with either w. or tan 
o 

6 fixed, 

(pw )2    (pwm)*
2 

m m 

2HoPo
2  <   2HoPj2 

or 

pw < (pw )» (2.4.117) 
m    m 

In practical computations, when the computed streamfunction is far from 
the converged value, a careful check has to be performed in order to 

insure that the current approximation of |v>|2 is not too high such as 

to violate the condition (2.4.117). 

When (2.4.117) is satisfied, two solutions occur, corresponding to the 
subsonic branch point S1, or to the supersonic branch of the mass flow 
relation versus density or Mach number. In order to solve the density 
equation and obtain a unique solution, one can apply a Newton method or 
a fixed point method. The former will allow to obtain either of the two 
solutions, if the user knows which one to select, while the latter will 
always lead to the subsonic solution. 

- 127 - 



Indeed, writing equations (2.4.103) or (2.1.105) under the form 

G(p/p{) - (p/pJ)Y_1 - b • (p/*i)a - 0 (2.1.118) 

where 

B - 1 - w*/2HJ        design option 
o 

B - 1 analysis option 

(2.4.119) 

the Newton iteration reads 

p"+1 - p" - t Pi (2.4.120) 
G 

The function G is the value of G for  p=p  and the jacobian G'  is 

defined by 

Y-2    2A 
G' - (Y-1)(p/pi)    - ( /*,)! (2.4.121) 

As expected, the zero of the jacobian G' is obtained at the critical 
mass flow condition (2.4.115) but the jacobian will remain of constant 
sign, positive or negative for subsonic or supersonic flows 
respectively. 

Graphically, it is easy to see that the Newton iteration will converge 
to the subsonic or the supersonic solution depending on the value chosen 
to initiate the iteration, figure 2.4.6. 

If the iteration starts at A1 at a subsonic velocity, the Newton 
procedure will converge to S1, while starting with A2 at a supersonic 
point will lead to the supersonic solution S2. 

On the other hand, the fixed point iteration 

(p/pj)"+1 - F(pn/pJ) (2.4.122) 

converges always to the subsonic solution SI as illustrated on figure 
2.4.6, excepted when the initial value is left of the supersonic 
solution.  In this case the iteration diverges. 

Boundary conditions for the streamfunction equation 

The boundary conditions for the solution of the streamfunction equation 
are easily defined and applied. 
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At the Inlet station, the flow is assumed to be known and therefore it 
Is easy to determine the streamfunctlon distribution. 

For 1-1, figure 2.4.7, 

*(xi.j '*uS '*i.j (2-l4-123) 

is given for all values of j, from the inlet velocity distribution. 

At the outlet station it is nearly always possible to select a station 
which is situated in a region of uniform meridional flow direction. 
Hence, if the last station is set perpendicularly to this direction, one 
can assume the normal derivative to be zero. That is 

|^-0      at the last station I-n (2.4.121) 
an 

where n is the normal direction. 

The hub and shroud walls can be taken as streamlines if no end wall 
boundary layer is to be considered. In this case one can select 

(2.4.125) 

However if an end wall boundary layer computation is performed or if the 
wall layer thicknesses are given, one can either displace the hub and 
shroud wall points by an amount equal to the local displacement 
thickness maintaining the above boundary conditions, or one can 
introduce a fictive mass flux compensating for the mass flow defect due 
to the shear layers. 

If 6* and 6* represent the hub and shroud displacement thicknesses with 

respect to the meridional velocity profiles, one can impose 

•I.J-1 " ° at hub wall j-1 

•i.J-H "  */211 at shroud wall j-M 

I,j-1    2ir   m H I,j-1 

•i.     . _ + 1_ (ow A*) 
*I,J-M  2ir  2it ^P ra T I.J-M 

(2.4.126) 

In this case the physical end walls are not streamlines anymore. 

2.4.5.  Finite Difference Solutions of the Streamfunctlon Equation 

The discretization of the streamfunctlon with finite differences has 
been initially proposed by Wu (1952). The approach of Wu was closely 
followed and developed to practical computer programs by Marsh (1968), 
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Davis (1971), (1975), Katsanis and McNally (1973), (1977), Biniaris 
(1975), Bosman and El Shaarawi (1977). 

All these authors use central difference schemes and hence the methods 
are limited to subsonic flow regions, either to meridional subsonic 
velocities for the design option, or to relative subsonic velocities in 
the analysis case. The densities are obtained by the fixed point 
iteration scheme in all the presently published methods. Of the above 
mentioned methods, Davis (1971) and Katsanis and McNally (1973) contain 
full documented codes. In particular the latter, called MERIDL, is 
extensively documented. 

In most methods an arbitrary grid is generated, although Katsanis and 
McNally work with a curvilinear orthogonal grid and Biniaris uses a 
cartesian grid in the meridional surface (r,z). Second order central 
differences are applied by these two authors, while Marsh (1968) and 
Davis (1971) apply up to third order central difference formulas on 
arbitrary grids. 

The algebraic matrix system is mostly solved by L.U decompositions with 
the exception of Katsanis and McNally (1973) and Biniaris (1975) who 
apply successive overrelaxation techniques. 

2.4.6.  Finite Element Solutions of the Streamfunction Equation 

Finite element solution procedures for the through-flow problem have 
been introduced by Adler and Krimerman (1971*), Hirsch and Warzee (197M). 
The first authors define triangular meshes with linear elements while 
Hirsch and Warzee apply biquadratic elements leading to third order 
accuracy for the streamfunction and hence, second order accuracy for the 
velocities. 

SUMMARY 

The specific approximations introduced in order to calculate multistage 
turbomachinery flows, are a combination of a distributed loss model and 
a quasi-three-dimensional decomposition. Two approaches, the 
streamsurface method or the averaging technique can be applied to define 
the quasi-3D formulation. The latter allows a through flow definition 
without ambiguity or arbitrary selected streamsurface shapes. However 
it does not permit a reconstruction of the full three dimensional flow. 

The quasi-3D approximation enables to reduce the problem to a succession 
of two-dimensional flows, basically of inviscid nature. The interaction 
between the through-flows and the blade-to-blade flows can be extended 
to the transfer of losses and flow angles from the blade-to-blades to 
the meridional flow. However, this can be replaced by empirical 
information, which is required in all cases if some three-dimensional 
effects have to be accounted for. 

The specific properties and solution methodology related to through-flow 
computations have been presented and different resolution techniques 
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have been described. None of the methods described however, is able to 
treat correctly relative supersonic flows in the analysis mode. This 
would.require a different simulation of the problem, see for instance 
Spurr (1981). 

Two methods are currently applied for through-flows : streamline 
curvature and streamsurface methods. The latter can be discretized 
either by finite differences or by finite elements. 

Solution techniques for blade-to-blade flows have not been discussed in 
this chapter since they do not require specific methods. Depending on 
the level of approximation, potential, Euler or Navier-Stokes models can 
be applied to the blade-to-blade flows following the methods presented 
in the corresponding chapters dealing with the discretization of these 
flow models. Several examples of blade-to-blade flow computations have 
already been shown in chapters 2 and 7 and other examples will be 
presented in the following chapters. 
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Figure 2.1.1. : Complex Mow Phenomena in compressor rotor blade row, 

•.   Flow visualization with standard smoke wire teehni<|iie    smoke wire 
inside endwall boundary layer. 

Figure 2.1.2. : Flow visualization of horseshoe vortex in the leading edge 
region of a turbine cascade. Courtesy, C. Sieverding, Von 
Karman Institute, Belgium. 
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Figure 2.1.3.   :  Transonic pressure field  in a compressor cascade.     From AGARD 
LS 83. 
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Figure 2.1.**.   :  Transonic flow shock model associated to figure 2.3.     From 
AGARD LS 83 
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Figure 2.1.5. : Meridional section of a two-stage compressor. 
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Figure 2.1.6. : Stagnation pressure distribution at outlet of the stator of 
the second stage of an axial compressor. Courtesy R. Dring, 
United Technology Research Center, USA. 
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Figure 2.2.1. : Angles of S2 surface with cylindrical coordinates (r,e,z). 

m 

Figure 2.2.2. : Definition of flow angles and velocity components, 
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Figure 2.2.3- : Cross section of a blade row by an axisymmetric surface 
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Figures 2.2.M. and 2.2.5. : Through flow interaction with blade to blade 
flow for choked compressor and turbine configurations 
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Figure 2.2.6. :Scheme of three dimensional flow computation with the 
—   streamsurface formulation, from Adler and Krimerman (1978). 
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Figure 2.2.7. [Comparison of ^ - 0.5, mean streamline angles with mean 
camberline angles, from Novak and Hearsey (1977) 
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Figure 2.2.8. :Meridional and blade to blade cross section of contoured 
turbine nozzle, from Novak and Hearsey (1977) 
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Figure 2.2.9. :Radial static pressure variation for leaned and unleaned 
annular turbine nozzle, from Novak and Hearsey (1977) 
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Figure 2.2.10. :Meridional distribution of B» or spacific mass flow ratio 

distribution for turbine nozzle, from Novak and Hearsey (1977) 
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Figure 2.3.1. Meridional and blade to blade sections of a multistage 
axial flow turbomachine. 
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Figure 2.M.1. : Meridional cross section of multibladed turbomachine. 
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Figure 2.M.2. : Layout of meridional section with arbitrary calculation 
stations. 
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Figure 2.1*.3. : Typical lay-out for streamline curvature methods 
I indicates the station number, j the streamline number, 
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Figure 2.1.M : Influence of curvature estimation on meridional velocity 
distribution in Denton's model problem, from AGARD AR175, 
(1981). 
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Figure 2.4.5. : Relation between density and streamfunction gradients. 

Figure 2.4.6. Iterative solution procedure for the density equation 
(2.4.118), in function of streamfunction gradients. 
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Figure 2.M.7. : Meridional section of mixed flow machine and grid layout. 

1M8 - 



INITIAL DISTRIBUTION LIST 

1. Commander 
Naval Air Systems Command 
Washington, DC  20361 
Attention:  Code AIR 931 1 

Code AIR 931 E 1 
Code AIR 932D 1 
Code AIR 530 1 
Code AIR 536 1 
Code AIR 00D 14 
Code AIR 93D 1 

2. Office of Naval Research 
800 N. Ouincy Street 
Arlington, VA 22217 
Attention:  Dr. A. D. Hood 1 

Dr. S. Lekoudis 1 

3. Commanding Officer 
Naval Air Propulsion Center 
Trenton, NJ  08628 
Attention:  G. Mangano, PE-31 1 

4. Commanding Officer 1 
Naval Air Development Center 
Warminster, PA  19112 
Attention:  AVTD 

5. Library 1 
Army Aviation Material Laboratories 
Department of the Army 
Fort Eustis, VA  23604 

6. Dr. Arthur J. Hennerstrom 1 
AFWAL/POTX 
Wright-Patterson AFB 
Dayton, OH  45433 

7. Air Force Office of Scientific Research 1 
AFOSR/NA 
Boiling Air Force Base 
Washington, DC 20332 
Attention:  Mr. James Wilson 

149 



8.  National Aeronautics & Space Administration 
Lewis Research Center 
21000 Brookpark Road 
Cleveland, OH 44135 
Attention:  Chief, Internal Fluid Mechanics Division 

Dr. J. Adamczyk, MS 5-9 
Library 

9. Dr. Bao B. Hwang 
Propulsion and Auxiliary Department 
David Taylor Naval Ship 
Research and Development Center 
Annapolis, MD 21402 

10. Library 
General Electric Company 
Aircraft Engine Technology Division 
DTO Mail Drop H43 
Cincinnati, OH 45215 

11. Library 
Pratt & Whitney Aircraft Group 
Post Office Box 109600 
West Palm Beach, FL  33410-9600 

12. Library 
Pratt-Whitney Aircraft Group 
East Hartford, CT 06108 

13. Library 
Curtis Wright Corporation 
Woodridge, NJ 07075 

14. Library 
AVCO/Lycoming 
550 S. Main Street 
Stratford, CT 06497 

15. Library 
Teledyne CAE, Turbine Engines 
1330 Laskey Road 
Toledo, OH 43612 

16. Library 
Williams International 
P. O. Box 200 
Walled Lake, MI  48088 

17. Library 
Detroit Diesel Allison Division G.M.C. 
P. O. Box 894 
Indianapolis, IN 46202 

150 



18. Library 
Garrett Turbine Engine Company 
111 S. 34th Street 
P. 0. Box 5217 
Phoenix, AZ 85010 

19. Professor J. P. Gostelow 
School of Mechanical Engineering 
The New South Wales Institute of Technology 
New South Wales 
AUSTRALIA 

20. Dr. G. J. Walker 
Civil and Mechanical Engineering 
Department 

The University of Tasmania 
Box 252C 
GPO Hobart, Tasmania  7110 
AUSTRALIA 

21. Professor F. A. E. Breugelmans 
Institut von Karman de la Dynamique 
des Fluides 

72 Chausee de Waterloo 
1640 Rhode-St. Genese 
BELGIUM 

22. Professor Ch. Hirsch 
Vrije Universiteit Brussel 
Pleinlaan 2 
1050 Brussels 
BELGIUM 

23. Director 
Gas Turbine Establishment 
P. 0. Box 305 
Jiangyou County 
Sichuan Province 
CHINA 

24. Professor C. H. Wu 
P. O. Box 2706 
Beijing 100080 
CHINA 

25. Director, Whittle Laboratory 
Department of Engineering 
Cambridge University 
ENGLAND 

151 



26. Professor Jacques Chauvin 
Universite d'Aix-Marseille 
1 Rue Honnorat 
Marseille 
FRANCE 

27. Mr. Jean Fabri 
ONERA 
29, Ave. de la Division Leclerc 
92 Chatillon 
FRANCE 

28. Professor D. Adler 
Technion Israel Institute of Technology 
Department of Mechanical Engineering 
Haifa 32000 
ISRAEL 

29. Dr. P. A. Paranjpe 
Head, Propulsion Division 
National Aeronautics Laboratory 
Post Bag 1700 
Bangalore - 17 
INDIA 

30. Dr. W. Schlachter 
Brown, Boveri Company Ltd. 
Dept.  T-T 
P. 0. Box CH-5401 Baden 
SWITZERLAND 

31. Professor Leonhard Fottner 
Department of Aeronautics and Astronautics 
German Armed Forces University 
Hochschule des Bundeswehr 
Werner Heisenbergweg 39 
8014 Neubiberg near Munich 
WEST GERMANY 

32. Professor Dr. Ing. Heinz E. Gallus 
Lehrstuhl und Institut feur Strahlantiebe 
und Turbourbeitsmashinen 

Rhein.-Westf. Techn. Hochschule Aachen 
Templergraben 55 
5100 Aachen 
WEST GERMANY 

33. Dr. Ing. Hans-J. Heinemann 
DFVLR-AVA 
Bunsenstrasse 10 
3400 Geottingen 
WEST GERMANY 

152 



34.  Dr. H. Weyer 
DFVLR 
Linder Hohe 
505 Porz-Wahn 
WEST GERMANY 

* 
35. Dr. Robert P. Dring 1 

United Technologies Research Center 
East Hartford, CT 06108 

i 

36. Chairman 1 
Aeronautics and Astronautics Department 
31-265 Massachusetts Institute of Technology 
Cambridge, Massachusetts  02139 

37. Dr. B. Lakshminarayana 1 
Professor of Aerospace Engineering 
The Pennsylvania State University 
233 Hammond Building 
University Park, Pennsylvania  16802 

38. Dr. Steven Shamroth 1 
Scientific Research Associates, Inc. 
PO Box 498 
Glastonbury, CT 06033 

39. Professor Alan H. Epstein 1 
Gas Turbine Laboratory 
Massachusetts Institute 

of Technology 
Cambridge, MA  02139 

40. Mechanical Engineering Department 
Virginia Polytechnic Institute and 

State University 
Blacksburg, VA  24061 
Attn:  Professor W. 0'Brian 1 

Professor H. Moses 1 

41. Professor T. H. Okiishi 1 
Professor of Mechanical Engineering 
208 Mechanical Engineering Building 
Iowa State University 
Ames, Iowa  50011 

* 42.  Dr. Fernando Sisto 1 
Professor and Head of Mechanical 

Engineering Department 
Stevens Institute of Technology 

1 Castle Point 
Hoboken, NJ  07030 

153 



43. Dr. Leroy H. Smith, Jr. 1 
Manager, Compressor and Fan 

Technology Operation 
General Electric Company 
Aircraft Engine Technology Division l 

DTO Mail Drop H43 
Cincinnati, OH 45215 

» 
44. Dr. W. Tabakoff 1 

Professor, Department of Aerospace 
Engineering 

University of Cincinnati 
Cincinnati, OH 45221 

45. Mr. P. Tramm 1 
Manager, Research Labs 
Detroit Diesel Allison Division 
Genteral Motors 
P. 0. Box 894 
Indianapolis, IN 46206 

46. Professor Frank Moore 1 
Sibley School of Mechanical & 
Aerospace Engineering 

291 Gramman Hall 
Cornell University 
Ithaca, NY  14853 

47. Mr. P. F. Yaggy 1 
Director 
U. S. Army Aeronautical Research Laboratory 
AMES Research Center 
Moffett Field, CA  94035 

48. Library 2 
Code 1424 
Naval Postgraduate School 
Monterey, CA 93943 

49. Office of Research Administration 1 
Code 012 
Naval Postgraduate School 
Monterey, CA 93943 

50. Defense Technical Information Center 2 
Cameron Station 
Alexandria, VA 22314 

'# 
51. Naval Postgraduate School 

Monterey, CA 93943 
Attn:  Professor M. F. Platzer (67PL) 1 

Turbopropulsion Laboratory (67Sf) 20 

154 


